zbMATH — the first resource for mathematics

On the hyperchaotic complex Lü system. (English) Zbl 1183.70053
Summary: The aim of this paper is to introduce the new hyperchaotic complex Lü system. This system has complex nonlinear behavior which is studied and investigated in this work. Numerically the range of parameter values of the system at which hyperchaotic attractors exist is calculated. This new system has a whole circle of equilibria and three isolated fixed points, while the real counterpart has only three isolated ones. The stability analysis of the trivial fixed point is studied. Its dynamics is more rich in the sense that our system exhibits both chaotic and hyperchaotic attractors, as well as periodic and quasi-periodic solutions and solutions that approach fixed points. The nonlinear control method based on Lyapunov function is used to synchronize the hyperchaotic attractors. The control of these attractors is studied. Different forms of hyperchaotic complex Lü systems are constructed using the state feedback controller and complex periodic forcing.

70K55 Transition to stochasticity (chaotic behavior) for nonlinear problems in mechanics
70K20 Stability for nonlinear problems in mechanics
70Q05 Control of mechanical systems
Full Text: DOI
[1] Vicente, R., Daudén, J., Toral, R.: Analysis and characterization of the hyperchaos generated by a semiconductor laser subject. IEEE J. Quantum Electron. 41, 541–548 (2005) · doi:10.1109/JQE.2005.843606
[2] Mascolo, S., Grassi, G.: Observers for hyperchaos synchronization with application to secure communications. In: Proceedings of the 1998 IEEE Int. Conference on Control Applications, Trieste, Italy, pp. 1016–1024, 1–4 September (1998)
[3] Peng, J.H., Ding, E.J., Ging, M., Yang, W.: Synchronizing hyperchaos with a scalar transmitted signal. Phys. Rev. Lett. 76, 904–907 (1996) · doi:10.1103/PhysRevLett.76.904
[4] Matsumoto, T., Chua, L.O., Kobayashi, K.: Hyperchaos: laboratory experimental and numerical confirmation. IEEE Trans. CAS 33, 1143–1147 (1986) · doi:10.1109/TCS.1986.1085862
[5] Tamasevicius, A., Cenys, A., Mykolaitis, G., Namajunas, A., Lindberg, E.: Hyperchaotic oscillators with gyrators. IEEE Electron. Lett. 33, 542–544 (1997) · doi:10.1049/el:19970393
[6] Kapitaniak, T., Chua, L.O., Zhong, G.Q.: Experimental hyperchaos in coupled Chua’s circuits. IEEE Trans. CAS 41, 499–503 (1994) · doi:10.1109/81.298367
[7] Barbara, C., Silvano, C.: Hyperchaotic behavior of two bi-directional Chua’s circuits. Int. J. Circuit. Theory Appl. 30, 625–637 (2002) · Zbl 1024.94522 · doi:10.1002/cta.213
[8] Arena, P., Baglio, S., Fortuna, L., Manganaro, G.: Hyperchaos from cellular neural networks. Electron. Lett. 31, 250–251 (1995) · doi:10.1049/el:19950189
[9] Hsieh, J.Y., Hwang, C.C., Li, A.P., Li, W.J.: Controlling hyperchaos of the Rössler system. Int. J. Control 72, 882–886 (1999) · Zbl 0989.93069 · doi:10.1080/002071799220614
[10] Chua, L.O., Hasler, M., Moschytz, G.S., Neirynck, J.: Autonomous cellular neural networks: A unified paradigm for pattern formation and active wave propagation. IEEE Trans. CAS 42, 559–577 (1995) · doi:10.1109/81.473564
[11] Grassi, G., Mascolo, S.: Synchronizing high dimensional chaotic systems via eigenvalue placement with application to cellular neural networks. Int. J. Bifurc. Chaos 9, 705–711 (1999) · Zbl 0980.37032 · doi:10.1142/S0218127499000493
[12] Rössler, O.E.: An equation for hyperchaos. Phys. Lett. A 71, 155–157 (1979) · Zbl 0996.37502 · doi:10.1016/0375-9601(79)90150-6
[13] Wang, G., Zhang, X., Zheng, Y., Li, Y.: A new modified hyperchaotic Lü system. Physica A 371, 260–272 (2006) · doi:10.1016/j.physa.2006.03.048
[14] Chen, A., Lu, J., Lü, J., Yu, S.: Generating hyperchaotic Lü attractor via state feedback control. Physica A 364, 103–110 (2006) · doi:10.1016/j.physa.2005.09.039
[15] Haeri, M., Dehghani, M.: Impulsive synchronization of Chen’s hyperchaotic system. Phys. Lett. A 356, 226–230 (2006) · Zbl 1160.94398 · doi:10.1016/j.physleta.2006.03.051
[16] Yassen, M.T.: On hyperchaotic synchronization of hyperchaotic Lü. Nonlinear Anal. Theory Methods Appl. 68(11), 3592–3600 (2008) · Zbl 1360.34118 · doi:10.1016/j.na.2007.04.002
[17] Wu, X., Wang, J., Lü, J., Iu, H.H.C.: Hyperchaotic behavior in a non-autonomous unified chaotic system with continuous periodic switch. Chaos Solitons Fractals 32, 1485–1490 (2007) · Zbl 1129.37017 · doi:10.1016/j.chaos.2005.11.100
[18] Jia, Q.: Hyperchaos generated from the Lorenz chaotic system and its control. Phys. Lett. A 366, 217–225 (2007) · Zbl 1203.93086 · doi:10.1016/j.physleta.2007.02.024
[19] Barboza, R.: Dynamics of a hyperchaotic Lorenz system. Int. J. Bifurc. Chaos 17(12), 4285–4294 (2007) · Zbl 1143.37309 · doi:10.1142/S0218127407019950
[20] Thomas, R., Basios, V., Eiswirth, M., Kruel, T., Rössler, O.E.: Hyperchaos of arbitrary order generated by a single feedback circuit, and the emergence of chaotic walks. Chaos 14(3), 669–674 (2004) · Zbl 1080.37037 · doi:10.1063/1.1772551
[21] Lü, J., Chen, G.: A new chaotic attractor coined. Int. J. Bifurc. Chaos 12(3), 659–661 (2002) · Zbl 1063.34510 · doi:10.1142/S0218127402004620
[22] Vanecek, A., Celikovsky, S.: Control Systems: From Linear Analysis to Synthesis of Chaos. Prentice-Hall, New York (1996)
[23] Lorenz, E.N.: Deterministic non-periodic flows. J. Atoms Sci. 20(1), 130–141 (1963) · Zbl 1417.37129 · doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[24] Chen, G., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurc. Chaos 9(7), 1465–1466 (1999) · Zbl 0962.37013 · doi:10.1142/S0218127499001024
[25] Lü, J., Chen, G., Cheng, D., Celikovsky, S.: Bridge the gap between the Lorenz and Chen systems. Int. J. Bifurc. Chaos 12(12), 2917–2926 (2002) · Zbl 1043.37026 · doi:10.1142/S021812740200631X
[26] Lü, J., Chen, G., Cheng, D.: A new chaotic system and beyond: The generalized Lorenz-like system. Int. J. Bifurc. Chaos 14(5), 1507–1537 (2004) · Zbl 1129.37323 · doi:10.1142/S021812740401014X
[27] Mahmoud, G.M., Bountis, T., Mahmoud, E.E.: Active control and global synchronization of the complex Chen and Lü systems. Int. J. Bifurc. Chaos 17(12), 4295–4308 (2007) · Zbl 1146.93372 · doi:10.1142/S0218127407019962
[28] Rauh, A., Hannibal, L., Abraham, N.: Global stability properties of the complex Lorenz model. Physica D 99, 45–58 (1996) · Zbl 0887.34048 · doi:10.1016/S0167-2789(96)00129-7
[29] Mahmoud, G.M., Aly, S.A., Al-Kashif, M.A.: Dynamical properties and chaos synchronization of a new chaotic complex nonlinear system. Nonlinear Dyn. 51, 171–181 (2008) · Zbl 1170.70365 · doi:10.1007/s11071-007-9200-y
[30] Mahmoud, G.M., Al-Kashif, M.A., Farghaly, A.A.: Chaotic and hyperchaotic attractors of a complex nonlinear system. J. Phys. A: Math. Theor. 41(5), 055104 (2008) (12 pp.) · Zbl 1131.37036 · doi:10.1088/1751-8113/41/5/055104
[31] Mahmoud, G.M., Al-Kashif, M.A., Aly, S.A.: Basic properties and chaotic synchronization of a complex Lorenz system. Int. J. Mod. Phys. C 18, 253–265 (2007) · Zbl 1115.37035 · doi:10.1142/S0129183107010425
[32] Mahmoud, G.M., Bountis, T., AbdEl-Latif, G.M., Mahmoud, E.E.: Chaos synchronization of two different chaotic complex Chen and Lü systems. Nonlinear Dyn. 55(1–2), 43–53 (2009). doi: 10.1007/s11071-008-9343-5 · Zbl 1170.70011 · doi:10.1007/s11071-008-9343-5
[33] Mahmoud, G.M., Bountis, T., Al-Kashif, M.A., Aly, S.A.: Dynamical properties and synchronization of complex nonlinear equations for detuned lasers. Dyn. Syst. 24(01), 63–79 (2009). doi: 10.1080/14689360802438298 · Zbl 1172.34033 · doi:10.1080/14689360802438298
[34] Mahmoud, G.M., Ahmed, M.E., Mahmoud, E.E.: Analysis of hyperchaotic complex Lorenz systems. Int. J. Mod. Phys. C 19(10), 1477–1494 (2008) · Zbl 1170.37311 · doi:10.1142/S0129183108013151
[35] Mahmoud, G.M., Mahmoud, E.E.: Synchronization and control of hyperchaotic complex Lorenz system. In: Dynamics Days Europe 2008 Conference, Delft, The Netherlands, 25–29 August (2008)
[36] Mahmoud, G.M., Aly, S.A., Farghaly, A.A.: On chaos synchronization of a complex two-coupled dynamos system. Chaos Solitons Fractals 33, 178–187 (2007) · Zbl 1152.37317 · doi:10.1016/j.chaos.2006.01.036
[37] Mahmoud, G.M., Bountis, T.: The dynamics of systems of complex nonlinear oscillators: A review. Int. J. Bifurc. Chaos 14(11), 3821–3846 (2004) · Zbl 1091.34524 · doi:10.1142/S0218127404011624
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.