zbMATH — the first resource for mathematics

Spectral analysis of nonlinear flows. (English) Zbl 1183.76833
Summary: We present a technique for describing the global behaviour of complex nonlinear flows by decomposing the flow into modes determined from spectral analysis of the Koopman operator, an infinite-dimensional linear operator associated with the full nonlinear system. These modes, referred to as Koopman modes, are associated with a particular observable, and may be determined directly from data (either numerical or experimental) using a variant of a standard Arnoldi method. They have an associated temporal frequency and growth rate and may be viewed as a nonlinear generalization of global eigenmodes of a linearized system. They provide an alternative to proper orthogonal decomposition, and in the case of periodic data the Koopman modes reduce to a discrete temporal Fourier transform. The Arnoldi method used for computations is identical to the dynamic mode decomposition recently proposed by Schmid and Sesterhenn [in: Sixty-First Annual Meeting of the APS Division of Fluid Dynamics (2008)], so dynamic mode decomposition can be thought of as an algorithm for finding Koopman modes. We illustrate the method on an example of a jet in crossflow, and show that the method captures the dominant frequencies and elucidates the associated spatial structures.

76M22 Spectral methods applied to problems in fluid mechanics
37N10 Dynamical systems in fluid mechanics, oceanography and meteorology
Full Text: DOI
[1] DOI: 10.1016/j.physd.2004.06.015 · Zbl 1059.37072 · doi:10.1016/j.physd.2004.06.015
[2] DOI: 10.1007/s11071-005-2824-x · Zbl 1098.37023 · doi:10.1007/s11071-005-2824-x
[3] DOI: 10.1017/S0022112096001255 · doi:10.1017/S0022112096001255
[4] DOI: 10.1017/S0022112095000462 · Zbl 0847.76007 · doi:10.1017/S0022112095000462
[5] Holmes, Turbulence, Coherent Structures, Dynamical Systems and Symmetry (1996) · doi:10.1017/CBO9780511622700
[6] DOI: 10.1017/S0022112094003800 · doi:10.1017/S0022112094003800
[7] DOI: 10.1017/S0022112006004034 · Zbl 1133.76323 · doi:10.1017/S0022112006004034
[8] DOI: 10.1017/S0022112009006053 · Zbl 1171.76372 · doi:10.1017/S0022112009006053
[9] DOI: 10.1016/0024-3795(80)90169-X · Zbl 0456.65017 · doi:10.1016/0024-3795(80)90169-X
[10] DOI: 10.1016/0024-3795(84)90221-0 · Zbl 0554.65025 · doi:10.1016/0024-3795(84)90221-0
[11] DOI: 10.1142/S0218127405012429 · Zbl 1140.76443 · doi:10.1142/S0218127405012429
[12] DOI: 10.1017/S0022112003006694 · Zbl 1067.76033 · doi:10.1017/S0022112003006694
[13] Schmid, Sixty-First Annual Meeting of the APS Division of Fluid Dynamics (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.