×

zbMATH — the first resource for mathematics

Three-dimensional direct numerical simulation of a turbulent lifted hydrogen jet flame in heated coflow: flame stabilization and structure. (English) Zbl 1183.76925
Summary: Direct numerical simulation (DNS) of the near field of a three-dimensional spatially developing turbulent lifted hydrogen jet flame in heated coflow is performed with a detailed mechanism to determine the stabilization mechanism and the flame structure. The DNS was performed at a jet Reynolds number of 11,000 with over 940 million grid points. The results show that auto-ignition in a fuel-lean mixture at the flame base is the main source of stabilization of the lifted jet flame. A chemical flux analysis shows the occurrence of near-isothermal chemical chain branching preceding thermal runaway upstream of the stabilization point, indicative of hydrogen auto-ignition in the second limit. The Damköhler number and key intermediate-species behaviour near the leading edge of the lifted flame also verify that auto-ignition occurs at the flame base. At the lifted-flame base, it is found that heat release occurs predominantly through ignition in which the gradients of reactants are opposed. Downstream of the flame base, both rich-premixed and non-premixed flames develop and coexist with auto-ignition. In addition to auto-ignition, Lagrangian tracking of the flame base reveals the passage of large-scale flow structures and their correlation with the fluctuations of the flame base. In particular, the relative position of the flame base and the coherent flow structure induces a cyclic motion of the flame base in the transverse and axial directions about a mean lift-off height. This is confirmed by Lagrangian tracking of key scalars, heat release rate and velocity at the stabilization point.

MSC:
76V05 Reaction effects in flows
76F65 Direct numerical and large eddy simulation of turbulence
80A32 Chemically reacting flows
Software:
TRANSPORT; CHEMKIN
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1016/j.pecs.2006.11.001
[2] DOI: 10.1016/j.proci.2006.08.117
[3] DOI: 10.1016/j.combustflame.2004.04.011
[4] DOI: 10.1002/kin.20026
[5] DOI: 10.1016/S0010-2180(00)00142-5
[6] DOI: 10.1017/S0022112086002288
[7] DOI: 10.1088/1749-4699/2/1/015001
[8] Law, Combustion Physics (2006)
[9] Tacke, Proc. Combust. Inst. 27 pp 1157– (1998)
[10] DOI: 10.1016/j.combustflame.2005.04.005
[11] DOI: 10.1016/0010-2180(95)00121-2
[12] DOI: 10.1016/S0021-9991(03)00328-0 · Zbl 1134.76736
[13] DOI: 10.1016/S1540-7489(02)80228-0
[14] DOI: 10.1016/S0168-9274(99)00141-5 · Zbl 0986.76060
[15] DOI: 10.1016/j.combustflame.2005.08.010
[16] DOI: 10.1016/S0360-1285(02)00008-4
[17] DOI: 10.1016/0168-9274(94)00004-2 · Zbl 0804.76062
[18] DOI: 10.1017/S002211200300466X · Zbl 1063.76513
[19] DOI: 10.1016/0360-1285(88)90015-9
[20] DOI: 10.1017/S0022112001006644 · Zbl 1049.76558
[21] Bilger, Proc. Combust. Inst. 22 pp 475– (1988)
[22] DOI: 10.1016/S0010-2180(97)00130-2
[23] Bilger, Turbulent Reacting Flows pp 65– (1979)
[24] DOI: 10.1016/j.proci.2006.08.025
[25] DOI: 10.1063/1.868531
[26] DOI: 10.1080/00102208408923819
[27] DOI: 10.1017/S0022112004000163 · Zbl 1067.76507
[28] DOI: 10.1016/j.proci.2008.05.041
[29] DOI: 10.1016/j.combustflame.2007.04.003
[30] Pope, Turbulent Flows (2000) · Zbl 0966.76002
[31] DOI: 10.1016/j.proci.2004.08.031
[32] DOI: 10.1016/0020-7225(88)90004-3 · Zbl 0641.76054
[33] DOI: 10.1016/j.proci.2006.07.144
[34] DOI: 10.1016/0021-9991(92)90046-2 · Zbl 0766.76084
[35] Im, Proc. Combust. Inst. 27 pp 1047– (1998)
[36] DOI: 10.1080/00102209208951793
[37] DOI: 10.1016/S0010-2180(99)00073-5
[38] Pitts, Proc. Combust. Inst. 22 pp 809– (1998)
[39] DOI: 10.1016/S0010-2180(97)81772-5
[40] DOI: 10.1080/00102200008947285
[41] DOI: 10.1016/j.proci.2004.08.187
[42] DOI: 10.1080/13647830600903472 · Zbl 1113.80025
[43] DOI: 10.2514/3.8089 · Zbl 0512.76114
[44] Peters, Turbulent Combustion (2000) · Zbl 0955.76002
[45] DOI: 10.1016/j.combustflame.2008.07.001
[46] Gkagkas, Eighth International Workshop on Measurement and Computation of Turbulent Nonpremixed Flames (2006)
[47] DOI: 10.1017/S0022112087002167 · Zbl 0633.76054
[48] DOI: 10.1063/1.1691820 · Zbl 0187.51701
[49] DOI: 10.1016/S0010-2180(97)00096-5
[50] DOI: 10.1017/S0022112004000175 · Zbl 1067.76502
[51] DOI: 10.1016/S0010-2180(97)00122-3
[52] DOI: 10.1063/1.866832
[53] DOI: 10.1016/S1540-7489(02)80245-0
[54] DOI: 10.1016/S0010-2180(03)00088-9
[55] Miake-Lye, Proc. Combust. Inst. 22 pp 817– (1988)
[56] DOI: 10.1016/S0010-2180(99)00006-1
[57] DOI: 10.1016/0010-2180(80)90017-6
[58] DOI: 10.1080/00102209708935661
[59] DOI: 10.1016/j.combustflame.2004.11.006
[60] DOI: 10.1080/13647830500307378 · Zbl 1086.80006
[61] DOI: 10.1016/S0010-2180(96)00149-6
[62] DOI: 10.1016/j.combustflame.2007.09.002
[63] DOI: 10.1080/13647830600898995 · Zbl 1121.80342
[64] DOI: 10.1088/1364-7830/8/1/001
[65] Dec, SAE Trans. 105 pp 1319– (1997)
[66] DOI: 10.1016/j.proci.2004.08.052
[67] Mascarenhas, Topoinvis’09: Topological Methods in Data Analysis and Visualization (2009)
[68] DOI: 10.1017/S0022112089002697
[69] DOI: 10.1016/j.proci.2004.08.024
[70] Yamashita, Proc. Combust. Inst. 26 pp 27– (1996)
[71] DOI: 10.1016/0010-2180(66)90028-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.