zbMATH — the first resource for mathematics

Synchronization of complex dynamical networks with switching topology: a switched system point of view. (English) Zbl 1183.93032
Summary: We study the synchronization problem for complex dynamical networks with switching topology from a switched system point of view. The synchronization problem is transformed into the stability problem for time-varying switched systems. We address two basic problems: synchronization under arbitrary switching topology, and synchronization via design of switching within a pre-given collection of topologies when synchronization cannot be achieved by using any topology alone in this collection. For both problems, we first establish synchronization criteria for general connection topology. Then, under the condition of simultaneous triangularization of the connection matrices, a common Lyapunov function (for the first problem) and a single Lyapunov and multiple Lyapunov functions (for the second problem) are systematically constructed respectively by those of several lower-dimensional dynamic systems. In order to achieve synchronization using multiple Lyapunov functions, a stability condition and switching law design method for time-varying switched systems are also presented, which avoid the usual non-increasing condition.

93A14 Decentralized systems
93B12 Variable structure systems
93D99 Stability of control systems
94C10 Switching theory, application of Boolean algebra; Boolean functions (MSC2010)
Full Text: DOI
[1] Arenas, A.; Diaz-Guilera, A.; Kurths, J.; Moreno, Y.; Zhou, C., Synchronization in complex networks, Physics reports, 469, 3, 93-153, (2008)
[2] Barahona, M.; Pecora, L.M., Synchronization in small-world systems, Physical review letters, 89, 5, 054101.1-054101.4, (2002)
[3] Belykh, I.; Belykh, V.N.; Hasler, M., Blinking model and synchronization in small-world networks with a time-varying coupling, Physica D, 195, 1-2, 188-206, (2004) · Zbl 1098.82621
[4] Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D.U., Complex networks: structure and dynamics, Physics reports, 424, 4-5, 175-308, (2006) · Zbl 1371.82002
[5] Chavez, M.; Hwang, D.U.; Amann, A.; Hentschel, H.; Boccaletti, S., Synchronization is enhanced in weighted complex networks, Physical review letters, 94, 21, 218701.1-218701.4, (2005)
[6] Comellas, F.; Gago, S., Synchronizability of complex networks, Journal of physics A: mathematical and theoretical, 40, 4483-4492, (2007) · Zbl 1189.90030
[7] DeLellis, P.; diBernardo, M.; Garofalo, F., Novel decentralized adaptive strategies for the synchronization of complex networks, Automatica, 45, 5, 1312-1318, (2009) · Zbl 1162.93361
[8] Gao, H.; Lam, J.; Chen, G., New criteria for synchronization stability of general complex dynamical networks with coupling delays, Physics letters A, 360, 263-273, (2006) · Zbl 1236.34069
[9] Hill, D.J., & Chen, G. (2006) Power systems as dynamic networks. In Proceedings of IEEE international symposium on circuits and systems (pp. 722-725). Kos, Greece
[10] Ihle, I.F.; Arcak, M.; Fossen, T.I., Passivity-based designs for synchronized path-following, Automatica, 43, 9, 1508-1518, (2007) · Zbl 1128.93331
[11] Kundur, P.; Paserba, J.; Ajjarapu, V.; Anderson, G.; Bose, A.; Canizares, C.; Hatziargyriou, N., Definition and classification of power system stability, IEEE transactions on power systems, 19, 2, 1387-1401, (2004)
[12] Liberzon, D., Switching in systems and control, (2003), Birkhauser Boston · Zbl 1036.93001
[13] Lorand, C.; Bauer, P.H., On synchronization errors in networked feedback systems, IEEE transactions on circuits and systems-I, 53, 2306-2317, (2006) · Zbl 1374.93303
[14] Mastellone, S., Lee, D., & Spong, M.W. (2006) Master-slave synchronization with switching communication through passive model-based control design. In Proceedings of American control conference (pp. 3203-3208)
[15] Nishikawa, T.; Motter, A.E., Maximum performance at minimum cost in network synchronization, Physics D, 224, 77-89, (2006) · Zbl 1117.34048
[16] Olfati-Saber, R.; Murray, R.M., Consensus problems in networks of agents with switching topology and time-delays, IEEE transactions on automatic control, 49, 1520-1533, (2004) · Zbl 1365.93301
[17] Papachristodoulou, A., & Jadbabaie, A. (2005) Synchronization in oscillator networks: switching topologies and non-homogeneous delays. In Proceedings of IEEE conference on decision and control (pp. 5692-5697)
[18] Pecora, L.M.; Carroll, T.L., Master stability functions for synchronized coupled systems, Physics review letters, 80, 2109-2112, (1998)
[19] Pham, Q.C.; Slotine, J.J., Stable concurrent synchronization in dynamic system networks, Neural networks, 20, 1, 62-77, (2007) · Zbl 1158.68449
[20] Pikovsky, A.; Rosenblum, M.; Kurths, J., Synchronization: A universal concept in nonlinear sciences, (2001), Cambridge University Press Cambridge · Zbl 0993.37002
[21] Rangarajan, G.; Ding, M., Stability of synchronized chaos in coupled dynamical systems, Physics letters A, 296, 204-209, (2002) · Zbl 0994.37026
[22] Stilwell, D.J.; Bollt, E.M.; Roberson, D.G., Sufficient conditions for fast switching synchronization in time-varying network topologies, SIAM journal of applied dynamical systems, 5, 140-156, (2006) · Zbl 1145.37345
[23] Sorrentino, F.; Bernardo, M.; Cuellar, G.H.; Boccaletti, S., Synchronization in weighted scale-free networks with degree-degree correlation, Physica D, 224, 123-129, (2006) · Zbl 1117.34049
[24] Strogatz, S.H., Exploring complex networks, Nature, 410, 268-276, (2001) · Zbl 1370.90052
[25] Sun, Y.; Wang, L.; Xie, G., Average consensus in networks of dynamic agents with switching topologies and multiple time-varying delays, Systems & control letters, 57, 175-183, (2008) · Zbl 1133.68412
[26] Tanner, H.G.; Jadbabaie, A.; Pappas, G.J., Flocking in fixed and switching networks, IEEE transactions on automatic control, 52, 863-868, (2007) · Zbl 1366.93414
[27] Wang, X.; Chen, G., Synchronization in small-world dynamical networks, International journal of bifurcation and chaos, 12, 1, 187-192, (2002)
[28] Wang, X.; Chen, G., Synchronization in scale-free dynamical networks: robustness and fragility, IEEE transactions on circuits and systems I, 49, 1, 54-62, (2002) · Zbl 1368.93576
[29] Wu, C.W., Synchronization in complex networks of nonlinear dynamical systems, (2007), World Scientific Singapore
[30] Zhou, J.; Lu, J.; Lv¨, J., Adaptive synchronization of an uncertain complex dynamical network, IEEE transactions on automatic control, 51, 652-656, (2006) · Zbl 1366.93544
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.