zbMATH — the first resource for mathematics

Linearity defects of modules over commutative rings. (English) Zbl 1184.13039
Let \((R, \mathfrak{m}, k)\) be a local ring. Any complex \(F\) of finitely generated free \(R\)-modules with \(\partial(F)\subseteq \mathfrak{m}F\) has a natural \(\mathfrak{m}\)-adic filtration associated graded complex with respect to it is denoted \(\mathrm{lin}^RF\), and is called the linear part of \(F\). Let \(M\) be a finitely generated \(R\)-module, and let \(F\) be its minimal free resolution. The linearity defect of \(M\) is denoted by \(\mathrm{lk}_RM\) and it is defined as \[ \mathrm{ld}_RM=\sup\{i\in\mathbb{Z}: H_i(\mathrm{lin}^RF)\neq 0\}. \] A finitely generated \(R\)-module \(M\) is called Koszul if \(\mathrm{ld}_RM=0\). The ring \(R\) is called Koszul if \(k\) is a Koszul module. We say that \(R\) is absolutely Koszul if every finitely generated \(R\)-module has finite linearity defect; equivalently, has a Koszul syzygy module.
One of the main result in the paper under review is the following:
Let \(R\to S\) be a surjective homomorphism of local rings such that the projective dimension of the \(\mathrm{gr}_{\mathfrak{m}}R\)-module \(\mathrm{gr}_{\mathfrak{m}}S\) is finite. If \(S\) is absolutely Koszul, then so is \(R\). Moreover, in this case, one has an inequality \[ \mathrm{gl\,ld}R\leq\mathrm{gl\,ld}S+\mathrm{proj.dim}_RS. \]
The authors give different applications of this result.

13D02 Syzygies, resolutions, complexes and commutative rings
Full Text: DOI arXiv
[1] Avramov, L.L.; Eisenbud, D., Regularity of modules over a Koszul algebra, J. algebra, 153, 1, 85-90, (1992) · Zbl 0770.13006
[2] Avramov, L.L.; Peeva, I., Finite regularity and Koszul algebras, Amer. J. math., 123, 2, 275-281, (2001) · Zbl 1053.13500
[3] Backelin, J.; Herzog, J., On ulrich-modules over hypersurface rings, (), 63-68
[4] Bourbaki, N., Elements of mathematics. commutative algebra, (1998), Springer-Verlag, (Chapters 1-7)
[5] Brennan, J.P.; Herzog, J.; Ulrich, B., Maximally generated cohen – macaulay modules, Math. scand., 61, 2, 181-203, (1987) · Zbl 0653.13015
[6] Bruns, W.; Herzog, J., Cohen – macaulay rings, Cambridge stud. adv. math., vol. 39, (1998), Cambridge University Press · Zbl 0909.13005
[7] Dwyer, W.; Greenlees, J.P.C.; Iyengar, S., Finiteness in derived categories of local rings, Comment. math. helv., 81, 2, 383-432, (2006) · Zbl 1096.13027
[8] Eisenbud, D., Commutative algebra. with a view toward algebraic geometry, Grad. texts in math., vol. 150, (1995), Springer-Verlag · Zbl 0819.13001
[9] Eisenbud, D.; Fløystad, G.; Schreyer, F.O., Sheaf cohomology and free resolutions over exterior algebras, Trans. amer. math. soc., 355, 11, 4397-4426, (2003) · Zbl 1063.14021
[10] Foxby, H.B.; Iyengar, S., Depth and amplitude of unbounded complexes, (), 119-137 · Zbl 1096.13516
[11] Grothendieck, A., Local cohomology, Lecture notes in math., vol. 41, (1967), Springer-Verlag · Zbl 0185.49202
[12] Hartshorne, R., Residues and duality, Lecture notes in math., vol. 20, (1966), Springer-Verlag
[13] Herzog, J.; Hibi, T., Componentwise linear ideals, Nagoya math. J., 153, 141-153, (1999) · Zbl 0930.13018
[14] Herzog, J.; Iyengar, S., Koszul modules, J. pure appl. algebra, 201, 1-3, 154-188, (2005) · Zbl 1106.13011
[15] Herzog, J.; Kühl, M., Maximal cohen – macaulay models over Gorenstein rings and bourbaki-sequences, (), 65-92
[16] Huneke, C.; Swanson, I., Integral closure of ideals, rings, and modules, London math. soc. lecture note ser., vol. 336, (2006), Cambridge University Press · Zbl 1117.13001
[17] Iversen, B., Amplitude inequalities for complexes, Ann. sci. école norm. sup. (4), 10, 547-558, (1977) · Zbl 0433.13003
[18] Kawasaki, T., On macaulayfication of Noetherian schemes, Trans. amer. math. soc., 352, 2517-2552, (2000) · Zbl 0954.14032
[19] Okazaki, R.; Yanagawa, K., Linearity defects of face rings, J. algebra, 314, 1, 362-382, (2007) · Zbl 1127.13020
[20] P. Roberts, Homological invariants of modules over commutative rings, in: Seminaire de Mathematiques Superieures, vol. 72, Les Presses de l’Universite de Montreal, 1980 · Zbl 0467.13007
[21] T. Römer, On minimal graded free resolutions, Dissertation, Essen, 2001 · Zbl 1197.13001
[22] Ulrich, B., Gorenstein rings and modules with high numbers of generators, Math. Z., 188, 23-32, (1984) · Zbl 0573.13013
[23] Yanagawa, K., Castelnuovo – mumford regularity for complexes and weakly Koszul modules, J. pure appl. algebra, 207, 1, 77-97, (2006) · Zbl 1163.16006
[24] Yanagawa, K., Linearity defect and regularity over a Koszul algebra, Math. scand., 104, 2, 205-220, (2009) · Zbl 1200.16040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.