×

Analytic continuation of eigenvalues of a quartic oscillator. (English) Zbl 1184.34083

For the boundary value problem on the real line
\[ -y''(x)+(x^4+\alpha x^2)y(x)=\lambda y(x),\quad y(-\infty)=y(\infty)=0 \]
the authors study the analytic continuation of its eigenvalues depending on the complex parameter \(\alpha\). Denoting by \(\lambda_n\) the eigenvalues which are real analytic functions of \(\alpha>0\), the authors prove their main result: a) all \(\lambda_n\) are branches of two multi-valued analytic functions \(\Lambda^i\), \(i=0,1\), of \(\alpha\), one for even \(n\), another for odd \(n\); b) the only singularities of \(\Lambda^i\) over the \(\alpha\)-plane are algebraic ramification points; c) for every bounded set \(X\) in the \(\alpha\)-plane, there are only finitely many ramification points of \(\Lambda^i\) over \(X\). At the end of the paper, the authors briefly mention some other one-parametric families of linear differential operators with polynomial potentials which can be treated by the same method.

MSC:

34L15 Eigenvalues, estimation of eigenvalues, upper and lower bounds of ordinary differential operators
34L40 Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.)
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
34B09 Boundary eigenvalue problems for ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Ahlfors, L.: Lectures on quasiconformal mappings. Second edition, Providence, RI: Amer. Math. Soc., 2007 · Zbl 0138.06002
[2] Bakken I.: A multiparameter eigenvalue problem in the complex plane. Amer. J. Math. 99(5), 1015–1044 (1977) · Zbl 0379.34021
[3] Bender C., Boettcher S.: Quasi-exactly solvable quartic potential. J. Phys. A: Math. Gen. 31, L273–L277 (1998) · Zbl 0929.34074
[4] Bender C., Turbiner A.: Analytic continuation of eigenvalue problems. Phys. Lett. A 173(6), 442–446 (1993)
[5] Bender C., Wu T.: Anharmonic oscillator. Phys. Rev. (2) 184, 1231–1260 (1969)
[6] Bochner S., Martin W.: Several Complex Variables. Princeton University Press, Princeton, NJ (1948) · Zbl 0041.05205
[7] Delabaere E., Pham F.: Unfolding the quartic oscillator. Ann. Physics 261(2), 180–218 (1997) · Zbl 0977.34052
[8] Delabaere E., Dillinger H., Pham F.: Exact semiclassical expansions for one-dimensional quantum oscillators. J. Math. Phys. 38(12), 6126–6184 (1997) · Zbl 0896.34051
[9] Delabaere E., Pham F.: Resurgence de Voros et periodes de curbes hyperelliptiques. Ann. Inst Fourier 43(1), 163–199 (1993) · Zbl 0766.34032
[10] Delabaere E., Pham F.: Resurgent methods in semi-classical asymptotics, Annales de l’Inst. Poincaré, Sect. A 71, 1–94 (1999) · Zbl 0977.34053
[11] Delabaere E., Trinh D.T.: Spectral analysis of the complex cubic oscillator. J. Phys. A 33, 8771–8796 (2000) · Zbl 1044.81555
[12] Dorey P., Dunning C., Tateo R.: Spectral equivalences, Bethe ansatz equations and reality properties in PT-symmetric quantum mechanics. J. Phys. A 34, 5679–5704 (2001) · Zbl 0982.81021
[13] Drape E.: Über die Darstellung Riemannscher Flächen durch Streckenkomplexe. Deutsche Math. 1, 805–824 (1936) · Zbl 0016.08101
[14] Eremenko, A.: Geometric theory of meromorphic functions. In: In the tradition of Ahlfors–Bers III, Contemp. Math. 355, Providence, RI, Amer. Math. Soc., 2004, pp. 221–230. (Expanded version available at http://www.math.purdue.edu/\(\sim\)eremenko/dvi/mich.pdf ) · Zbl 1077.30023
[15] Eremenko A.: Exceptional values in holomorphic families of entire functions. Michigan Math. J. 54(3), 687–696 (2006) · Zbl 1155.32005
[16] Eremenko A., Gabrielov A., Shapiro B.: Zeros of eigenfunctions of some anharmonic oscillators. Ann. Inst. Fourier 58(2), 603–624 (2008) · Zbl 1155.34043
[17] Fedoryuk M.: Asymptotic Analysis. Springer, New York (1993) · Zbl 0782.34001
[18] Goldberg, A., Ostrovskii, I.: Distribution of values of meromorphic functions, Moscow: Nauka, 1970, (in Russian. English translation: Value Distribution of Meromorphic Functions, Providence, RI: Amer. Math. Soc., 2008)
[19] Gunning R., Rossi H.: Analytic functions of several complex variables. Prentice-Hall, Englewood Cliffs, HJ (1965) · Zbl 0141.08601
[20] Gurarii, V., Matsaev, V., Ruzmatova, N.: Asymptotic behavior of solutions of second-order ordinary differential equation in the complex domain, and the spectrum of an anharmonic oscillator. In: Analytic methods in probability theory and operator theory, Kiev: Naukova Dumka, 1990, pp. 145–154
[21] Julia G.: Sur le domain d’existence d’une fonction implicite définie par une relation entière G(x,y) = 0. Bull. Soc. Math. France 54, 26–37 (1926) · JFM 52.0327.05
[22] Kato T.: Perturbation theory for linear operators. Springer-Verlag, Berlin-New York (1976) · Zbl 0342.47009
[23] Lando S., Zvonkin A.: Graphs on surfaces and their applications. Springer, Berlin-Heidelberg-New York (2004) · Zbl 1040.05001
[24] Loeffel, J., Martin, A.: Propriétés analytiques des niveaux de l’oscillateur anharmonique et convergence des approximants de Pade. In: Cargése Lectures in Physics, Vol. 5, New York: Gordon and Breach, 1972, pp. 415–429
[25] Nevanlinna, F.: Über eine Klasse meromorpher Funktionen. 7 Congr. Math. Scand., Oslo, 1929 · JFM 55.0768.03
[26] Nevanlinna R.: Über Riemannsche Flächen mit endlich vielen Windungspunkten. Acta Math. 58, 295–373 (1932) · Zbl 0004.35504
[27] Nevanlinna R.: Eindeutige analytische Funktionen. Springer, Berlin (1953) · Zbl 0050.30302
[28] Shin, Kwang C.: Schrödinger type eigenvalue problems with polynomial potentials: asymptotics of eigenvalues. http://arXiv.org/list/math.SP/0411143v1 , 2004
[29] Shin Kwang C.: Eigenvalues of PT-symmetric oscillators with polynomial potentials. J. Phys. A 38, 6147–6166 (2005) · Zbl 1079.34063
[30] Shin Kwang C.: On the reality of the eigenvalues for a class of PT-symmetric operators. Commun. Math. Phys. 229, 543–564 (2002) · Zbl 1017.34083
[31] Sibuya Y.: Global theory of a second order linear ordinary differential equation with a polynomial coefficient. North Holland, Amsterdam (1975) · Zbl 0322.34006
[32] Simon B.: Coupling constant analyticity for the anharmonic oscillator. Ann. Phys. 58, 76–136 (1970)
[33] Simon, B.: The anharmonic oscillator: a singular perturbation theory. In: Cargése Lectures in Physics, Vol. 5, New York: Gordon and Breach, 1972, pp. 383–414
[34] Simon B.: Large order and summability of eigenvalue perturbation theory: a mathematical overview. Intl. J. Quantum Chem. 21, 3–25 (1982)
[35] Stoïlov S.: Leçons sur les principes topologiques de la théorie des fonctions analytiques. Gauthier-Villars, Paris (1956)
[36] Turbiner A., Ushveridze A.: Spectral singularities and the quasi-exactly solvable problem. Phys. Lett. 126 A, 181–183 (1987)
[37] Ushveridze, A.: Quasi-exactly solvable models in quantum mechanics. Bristol and Philadelphia: Inst. of Phys. Publ., 1994 · Zbl 0834.58042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.