×

zbMATH — the first resource for mathematics

Fractal measures and their singularities: the characterization of strange sets. (English) Zbl 1184.37028
We propose a description of normalized distributions (measures) lying upon possibly fractal sets; for example those arising in dynamical systems theory. We focus upon the scaling properties of such measures, by considering their singularities, which are characterized by two indices: \(\alpha\), which determines the strength of their singularities; and \(f\), which describes how densely they are distributed. The spectrum of singularities is described by giving the possible range of \(\alpha\) values and the function \(f(\alpha)\). We apply this formalism to the \(2^\omega\) cycle of period doubling, to the devil’s staircase of mode locking, and to trajectories on 2-tori with golden-mean winding numbers. In all cases the new formalism allows an introduction of smooth functions to characterize the measures. We believe that this formalism is readily applicable to experiments and should result in new tests of global universality.

MSC:
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
28A80 Fractals
82B05 Classical equilibrium statistical mechanics (general)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] M. Widom, J. Stat. Phys. 32 pp 443– (1983) · Zbl 0594.58031
[2] , Phys. Scr. T 9 pp 40– (1985)
[3] K. G. Wilson, Sci. Am. 241 (1979)
[4] B. B. Mandelbrot, Ann. Isr. Phys. Soc. 225 (1977)
[5] H. Aref, J. Fluid Mech. 109 pp 435– (1981)
[6] I. Procaccia, J. Stat. Phys. 36 pp 649– (1984) · Zbl 0589.76073
[7] L. de Arcangelis, Phys. Rev. B 31 pp 4725– (1985)
[8] T. A. Witten, Jr., Phys. Rev. Lett. 47 pp 1400– (1981)
[9] B. Widom, J. Chem. Phys. 43 pp 3892– (1965)
[10] M. E. Fisher, in: Proceedings of the University of Kentucky Centennial Conference on Phase Transitions
[11] A. Z. Patashinskii, Sov. Phys.–JETP 23 pp 292– (1966)
[12] L. P. Kadanoff, Rev. Mod. Phys. 39 pp 395– (1967)
[13] L. P. Kadanoff, Physics 2 pp 263– (1966)
[14] D. Friedan, Phys. Rev. Lett. 52 pp 1575– (1984)
[15] L. Turkevich, Phys. Rev. Lett. 55 pp 1024– (1985)
[16] H. G. E. Hentschel, Physica pp 435– (1983)
[17] P. Grassberger, Physica pp 34– (1984)
[18] M. J. Feigenbaum, J. Stat. Phys. 19 pp 25– (1978) · Zbl 0509.58037
[19] M. J. Feigenbaum, J. Stat. Phys. 21 pp 669– (1979) · Zbl 0515.58028
[20] M. H. Jensen, Phys. Rev. Lett. 50 pp 1637– (1983)
[21] M. H. Jensen, Phys. Rev. A 30 pp 1960– (1984)
[22] M. H. Jensen, Phys. Rev. A 30 pp 1970– (1984)
[23] P. Cvitanović, Phys. Rev. Lett. 55 pp 343– (1985)
[24] J. Shenker, Physica pp 405– (1982)
[25] M. J. Feigenbaum, Physica pp 370– (1982)
[26] S. Ostlund, Phys. Rev. Lett. 49 pp 132– (1982)
[27] S. Ostlund, Physica pp 303– (1983)
[28] A. Cohen, Phys. Rev. A 31 pp 1872– (1985)
[29] M. H. Jensen, Phys. Rev. Lett. 55 pp 2798– (1985)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.