MV-algebras with internal states and probabilistic fuzzy logics. (English) Zbl 1185.06007

Summary: We enlarge the language of MV-algebras by a unary operation \(\sigma \) equationally described so as to preserve the basic properties of a state in its original meaning. The resulting class of algebras will be called MV-algebras with internal state (or SMV-algebras for short). After discussing some basic algebraic properties of SMV-algebras, we apply them to the study of the coherence problem for rational assessments on many-valued events. Then we propose an algebraic treatment of the Lebesgue integral and we show that internal states defined on a divisible MV\(_{\Delta }\)-algebra can be represented by means of this more general notion of integral.


06D35 MV-algebras
03B52 Fuzzy logic; logic of vagueness
28A99 Classical measure theory
Full Text: DOI


[1] M. Baaz, Infinite-valued Gödel logics with 0-\(1\)-projections and relativizations, in: P. Hájek(Ed.), GÖDEL 96, LNL 6, Springer-Velag, 1996, pp. 23-33. · Zbl 0862.03015
[2] Belluce, L.P., Semisimple algebras of infinite-valued logic and bold fuzzy set theory, Can. J. math., 38, 6, 1356-1379, (1986) · Zbl 0625.03009
[3] Blok, W.; Pigozzi, D., Algebraizable logics, Mem. am. math. soc., 396, 77, (1989), (Am. Math Soc. Providence) · Zbl 0664.03042
[4] Burris, S.; Sankappanavar, H.P., A course in universal algebra, (1981), Springer Velag New York · Zbl 0478.08001
[5] Chang, C.C., Algebraic analysis of many-valued logics, Trans. am. math. soc., 88, 467-490, (1958) · Zbl 0084.00704
[6] Cignoli, R.; D’Ottaviano, I.M.L.; Mundici, D., Algebraic foundations of many-valued reasoning, (2000), Kluwer Dordrecht · Zbl 0937.06009
[7] B. de Finetti, Sul signicato soggettivo della probabilità, Fundamenta Mathematicae 17 (1931) 298-329. Translated into English as On the subjective meaning of probability, in: Paola Monari, Daniela Cocchi (Eds.), Probabilità e Induzione, Clueb, Bologna, 1993, pp. 291-321.
[8] B. de Finetti, La prévision: ses lois logiques, ses sources subjectives, Annales de lInstitut H. Poincaré 7 (1937) 1-68. Translated into English by Henry E. Kyburg Jr., as Foresight: Its Logical Laws, its Subjective Sources, in: Henry E. Kyburg Jr., Howard E. Smokler (Eds.), Studies in Subjective Probability, Wiley, New York, 1964. Second edition published by Krieger, New York, 1980, pp. 53-118.
[9] de Finetti, B., Theory of probability, vol. 1, (1974), John Wiley and Sons Chichester
[10] Di Nola, A., Representation and reticulation by quotients of MV-algebras, Ricerche mat. (Naples), 40, 291-297, (1991) · Zbl 0767.06013
[11] Flaminio, T., Strong non-standard completeness for fuzzy logics, Soft comput., 12, 321-333, (2008) · Zbl 1132.03332
[12] Flaminio, T.; Godo, L., A logic for reasoning on the probability of fuzzy events, Fuzzy sets syst., 158, 625-638, (2007) · Zbl 1116.03018
[13] T. Flamino, F. Montagna, An algebraic approach to states on MV-algebras, in: M. Štěpnička, V. Novák, U. Bodenhofer (Eds.), Proceedings of EUSFLAT’07, vol. 2, 2007, pp. 201-206.
[14] B. Gerla, Many-valued logics of continuous t-norms and their functional representation, Ph.D. Thesis, University of Milan, 2001.
[15] Hájek, P., Metamathematics of fuzzy logics, (1998), Kluwer Academic Publisher Dordrecht · Zbl 0937.03030
[16] Hájek P, P., Complexity of fuzzy probability logics II, Fuzzy sets syst., 158, 23, 2605-2611, (2007) · Zbl 1124.03008
[17] Kroupa, T., Every state on semisimple MV-algebra is integral, Fuzzy sets syst., 157, 20, 2771-2787, (2006) · Zbl 1107.06007
[18] T. Kroupa, States and conditional probability on MV-algebras, Ph.D. Thesis, Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Cybernetics. Prague, 2005. · Zbl 1061.60004
[19] Kühr, J.; Mundici, D., De Finetti theorem and Borel states in [0,1]-valued algebraic logic, Int. J. approx. reason., 46, 3, 605-616, (2007) · Zbl 1189.03076
[20] Marra, V.; Mundici, D., The Lebesgue state of a unital abelian lattice-ordered group, J group theory, 10, 5, 655-684, (2007) · Zbl 1136.06009
[21] McNaughton, R., A theorem about infinite-valued sentential logic, J symbolic logic, 16, 1-13, (1951) · Zbl 0043.00901
[22] Mundici, D., Interpretation of AF \(C^\ast\)-algebras in łukasiewicz sentential calculus, J funct. anal., 65, 145-153, (1986)
[23] Mundici, D., Averaging the truth-value in łukasiewicz logic, Stud. log., 55, 1, 113-127, (1995) · Zbl 0836.03016
[24] Mundici, D., Tensor products and the loomis – sikorski theorem for MV-algebras, Adv. appl. math., 22, 227-248, (1999) · Zbl 0926.06004
[25] Mundici, D., Bookmaking over infinite-valued events, Int. J. approx. reason., 46, 223-240, (2006) · Zbl 1123.03011
[26] Navara, M., Triangular norms and measures of fuzzy sets, (), 345-390 · Zbl 1073.28015
[27] Noguera C., Algebraic study of axiomatic extensions of triangular norm based fuzzy logics, Monografies de l’Institut d’Investigació en Intel\(\cdot\)ligència Artificial, vol. 27, Barcelona, 2007.
[28] Panti G., Invariant measures in free MV-algebras. Communications in Algebra, Arxiv preprint math. LO/0508445, in press.
[29] Paris, J., A note on the Dutch book method, (), 301-306
[30] Pierce, K.R., Amalgamation of lattice ordered groups, Trans. am. math. soc., 172, (1972)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.