×

zbMATH — the first resource for mathematics

Ostrowski type inequalities in the Grushin plane. (English) Zbl 1185.26045
Summary: Motivated by the work of B.-S. Lian and Q.-H. Yang [J. Math. Anal. Appl. 365, No. 1, 158–166 (2010; Zbl 1184.26022)] we proved an Ostrowski inequality associated with Carnot-Carathéodory distance in the Grushin plane. The procedure is based on a representation formula. Using the same representation formula, we prove some Hardy type inequalities associated with Carnot-Carathéodory distance in the Grushin plane.

MSC:
26D15 Inequalities for sums, series and integrals
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Ostrowski, A, Über die absolutabweichung einer differentiierbaren funktion von ihrem integralmittelwert, Commentarii Mathematici Helvetici, 10, 226-227, (1938) · JFM 64.0209.01
[2] Anastassiou, GA, Ostrowski type inequalities, Proceedings of the American Mathematical Society, 123, 3775-3781, (1995) · Zbl 0860.26009
[3] Anastassiou GA: Quantitative Approximations. Chapman & Hall, Boca Raton, Fla, USA; 2001. · Zbl 0969.41001
[4] Anastassiou, GA; Goldstein, JA, Ostrowski type inequalities over Euclidean domains, Atti della Accademia Nazionale dei Lincei, 18, 305-310, (2007) · Zbl 1142.26011
[5] Anastassiou, GA; Goldstein, JA, Higher order Ostrowski type inequalities over Euclidean domains, Journal of Mathematical Analysis and Applications, 337, 962-968, (2008) · Zbl 1144.26024
[6] Lian, B-S; Yang, Q-H, Ostrowski type inequalities on H-type groups, Journal of Mathematical Analysis and Applications, 365, 158-166, (2010) · Zbl 1184.26022
[7] Calin, O; Chang, D-C; Greiner, P; Kannai, Y, On the geometry induced by a grusin operator, No. 382, 89-111, (2005), Providence, RI, USA · Zbl 1096.53019
[8] Greiner, PC; Holcman, D; Kannai, Y, Wave kernels related to second-order operators, Duke Mathematical Journal, 114, 329-386, (2002) · Zbl 1072.35130
[9] Monti, R; Morbidelli, D, The isoperimetric inequality in the Grushin plane, The Journal of Geometric Analysis, 14, 355-368, (2004) · Zbl 1076.53035
[10] Paulat M: Heat kernel estimates for the grusin operator. http://arxiv.org/abs/0707.4576
[11] Chow, WL, Über systeme von linearen partiellen differentialgleichungen erster ordnung, Mathematische Annalen, 117, 98-105, (1939) · JFM 65.0398.01
[12] D’Ambrosio, L, Hardy inequalities related to Grushin type operators, Proceedings of the American Mathematical Society, 132, 725-734, (2004) · Zbl 1049.35077
[13] Monti, R, Some properties of Carnot-varathéodory balls in the Heisenberg group, Atti della Accademia Nazionale dei Lincei, 11, 155-167, (2000) · Zbl 1197.53064
[14] Beals, R; Gaveau, B; Greiner, PC, Hamilton-Jacobi theory and the heat kernel on Heisenberg groups, Journal de Mathématiques Pures et Appliquées, 79, 633-689, (2000) · Zbl 0959.35035
[15] Monti, R; Serra Cassano, F, Surface measures in Carnot-Carathéodory spaces, Calculus of Variations and Partial Differential Equations, 13, 339-376, (2001) · Zbl 1032.49045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.