Buslaev, V. S.; Komech, A. I.; Kopylova, E. A.; Stuart, D. On asymptotic stability of solitary waves in Schrödinger equation coupled to nonlinear oscillator. (English) Zbl 1185.35247 Commun. Partial Differ. Equations 33, No. 4, 669-705 (2008). The long-time asymptotics is analysed for finite energy solutions of the 1D Schrödinger equation coupled to a nonlinear oscillator. The techniques of Buslaev and Perelman based on the symplectic geometry in Hilbert space and the spectral theory of nonselfadjoint operators are used. For initial states close to a solitary wave, the solution converges to a sum of another solitary wave and dispersive wave which is a solution to the free Schrödinger equation. Reviewer: Igor Andrianov (Köln) Cited in 26 Documents MSC: 35Q55 NLS equations (nonlinear Schrödinger equations) 35Q51 Soliton equations 35B35 Stability in context of PDEs 35B40 Asymptotic behavior of solutions to PDEs 37K40 Soliton theory, asymptotic behavior of solutions of infinite-dimensional Hamiltonian systems Keywords:Schrödinger equation; nonlinear oscillator; solitary wave; asymptotic stability PDF BibTeX XML Cite \textit{V. S. Buslaev} et al., Commun. Partial Differ. Equations 33, No. 4, 669--705 (2008; Zbl 1185.35247) Full Text: DOI arXiv OpenURL References: [1] Berestycki H., Arch. Rat. Mech. and Anal. 82 (4) pp 313– (1983) [2] Buslaev V. S., St. Petersburg Math. J. 4 pp 1111– (1993) [3] Buslaev V. S., Amer. Math. Soc. Trans. 164 (2) pp 75– (1995) [4] Buslaev V. S., Ann. Inst. Henri Poincaré, Anal. Non Linéaire 20 (3) pp 419– (2003) · Zbl 1028.35139 [5] Cuccagna S., Rev. Math. Phys. 15 pp 877– (2003) · Zbl 1084.35089 [6] Deift P. A., Important Developments in Solitan Theory pp 181– (1993) [7] Faddeev L. D., Hamiltonian Methods in the Theory of Solitons (1987) · Zbl 1111.37001 [8] Grillakis M., J. Func. Anal. 74 (1) pp 160– (1987) · Zbl 0656.35122 [9] Imaikin V., Comm. Math. Phys. 268 (2) pp 321– (2006) · Zbl 1127.35054 [10] Jensen A., Duke Math. J. 46 pp 583– (1979) · Zbl 0448.35080 [11] Kirr E., Comm. Math. Phys. 272 (2) pp 443– (2007) · Zbl 1194.35416 [12] Komech A. I., C. R. Math. Acad. Sci. Paris 343 (2) pp 111– (2006) · Zbl 1096.35020 [13] Komech A. I., Arch. Rat. Mech. Anal. 185 pp 105– (2007) · Zbl 1131.35003 [14] Komech A. I., Russ. J. Math. Phys. 14 (2) pp 164– (2007) · Zbl 1125.35092 [15] Miller J., Comm. Pure Appl. Math. 49 (4) pp 399– (1996) · Zbl 0854.35102 [16] Pego R. L., Phys. Lett. A 162 pp 263– (1992) [17] Pego R. L., Commun. Math. Phys. 164 pp 305– (1994) · Zbl 0805.35117 [18] Pillet C. A., J. Differ. Equations 141 (2) pp 310– (1997) · Zbl 0890.35016 [19] Riesz F., Functional Analysis (1990) [20] Rodnianski I., Commun. Pure Appl. Math. 58 (2) pp 149– (2005) · Zbl 1130.81053 [21] Schrödinger E., Ann. d. Phys. 81 pp 109– (1926) · JFM 52.0966.03 [22] Soffer A., Comm. Math. Phys. 133 pp 119– (1990) · Zbl 0721.35082 [23] Soffer A., J. Differential Equations 98 (2) pp 376– (1992) · Zbl 0795.35073 [24] Soffer A., Invent. Math. 136 pp 9– (1999) · Zbl 0910.35107 [25] Soffer A., Rev. Math. Phys. 16 (8) pp 977– (2004) · Zbl 1111.81313 [26] Stuart D. M. A., Journal de Mathematiques Pures et Appliqu’ees 80 (1) pp 51– (2001) · Zbl 1158.35389 [27] Tsai T.-P., Commun. Pure Appl. Math. 55 (2) pp 153– (2002) · Zbl 1031.35137 [28] Zygmund A., Trigonometric Series I (1978) · Zbl 0628.42001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.