zbMATH — the first resource for mathematics

Stochastic fractional Anderson models with fractional noises. (English) Zbl 1185.35346
Summary: The authors are concerned with a class of one-dimensional stochastic Anderson models with double-parameter fractional noises, whose differential operators are fractional. A unique solution for the model in some appropriate Hilbert space is constructed. Moreover, the Lyapunov exponent of the solution is estimated, and its Hölder continuity is studied. On the other hand, the absolute continuity of the solution is also discussed.

35R60 PDEs with randomness, stochastic partial differential equations
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
35R11 Fractional partial differential equations
35B65 Smoothness and regularity of solutions to PDEs
Full Text: DOI
[1] Azerad, P. and Mellouk, M., On a stochastic partial differential equation with non-local diffusion, Potential Anal., 27(2), 2007 183–197. · Zbl 1120.60059 · doi:10.1007/s11118-007-9052-6
[2] Bo, L. J., Jiang, Y. M. and Wang, Y. J., On a class of stochastic Anderson models with fractional noises, Stoch. Anal. Appl., 26(2), 2008, 256–273. · Zbl 1136.60345 · doi:10.1080/07362990701857095
[3] Bo, L. J., Shi, K. H. and Wang, Y. J., On a nonlocal stochastic Kuramoto-Sivashinsky equation with jumps, Stoch. Dyn., 7(4), 2007, 439–457. · Zbl 1203.60080 · doi:10.1142/S0219493707002104
[4] Bo, L. J., Jiang, Y. M. and Wang, Y. J., Stochastic Cahn-Hilliard equation with fractional noise, Stoch. Dyn., 8(4), 2008, 643–665. · Zbl 1156.60041 · doi:10.1142/S0219493708002500
[5] Bo, L. J. and Wang, Y. J., Stochatic Cahn-Hilliard partial differential equations with Lévy spacetime noises, Stoch. Dyn., 6(2), 2006, 229–244. · Zbl 1098.60058 · doi:10.1142/S0219493706001736
[6] Cardon-Weber, C., Cahn-Hilliard stochastic equation: existence of the solution and of its density, Bernoulli, 7(5), 2001, 777–816. · Zbl 0995.60058 · doi:10.2307/3318542
[7] Dasgupta, A. and Kallianpur, G., Chaos decomposition of multiple fractional integrals and applications, Prob. Theory Relat. Fields, 115(4), 1999, 527–548. · Zbl 0952.60043 · doi:10.1007/s004400050248
[8] Debbi, L. and Dozzi, M., On the solutions of nonlinear stochastic fractional partial differential equations in one spatial dimension, Stoch. Proc. Appl., 115(11), 2005, 1764–1781. · Zbl 1078.60048 · doi:10.1016/j.spa.2005.06.001
[9] Eidelman, S. D. and Zhitarashu, N. V., Parabolic Boundary Value Problems, Birkhäuser, Basel, 1998.
[10] Hu, Y. Z., Heat equations with fractional white noise potentials, Appl. Math. Optim., 43(3), 2001, 221–243. · Zbl 0993.60065 · doi:10.1007/s00245-001-0001-2
[11] Hu, Y. Z., Chaos expansion of heat equations with white noise potentials, Potential Anal., 16(1), 2002, 45–66. · Zbl 0993.60063 · doi:10.1023/A:1024878703232
[12] Jiang, Y. M., Shi, K. H. and Wang, Y. J., On a class of stochastic fractional partial differential equations with fractional noises, preprint, 2008.
[13] Le Mehaute, A., Machado, T., Trigeassou, J. C. and Sabatier, J., Fractional Differentiation and Its Applications, Proceedings of the First IFAC Workshop, Vol. 2004-1, International Federation of Automatic Control, ENSEIRB, Bordeaux, France, 2004.
[14] Mann, J. A. and Woyczynski, W. A., Growing fractal interfaces in the presence of self-similar hopping surface diffusion, Phys. A, 291(1–4), 2001, 159–183. · Zbl 0972.82078 · doi:10.1016/S0378-4371(00)00467-2
[15] Mémin, J., Mishura, Y. and Valkeila, E., Inequalities for moments of Wiener integrals with respect to a fractional Brownian motion, Stat. Prob. Lett., 51(2), 2001, 197–206. · Zbl 0983.60052 · doi:10.1016/S0167-7152(00)00157-7
[16] Metzler, R. and Klafter, J., The random walk’s guide to anomalous diffusion: a fractionl dynamics approach, Phys. Rep., 339, 2000, 1–77. · Zbl 0984.82032 · doi:10.1016/S0370-1573(00)00070-3
[17] Mueller, C., Long-time existence for the heat equation with a noise term, Prob. Theory Relat. Fields, 90(4), 1991, 505–517. · Zbl 0729.60055 · doi:10.1007/BF01192141
[18] Mueller, C. and Tribe, R., A measure-valued process related to the parabolic Anderson model, Prog. Prob., 52, 2002, 219–227. · Zbl 1030.60051
[19] Nualart, D. and Ouknine, Y., Regularization of quasilinear heat equations by a fractional noise, Stoch. Dyn., 4(2), 2004, 201–221. · Zbl 1080.60065 · doi:10.1142/S0219493704001012
[20] Nualart, D. and Rozovskii, B., Weighted stochastic Sobolev spaces and bilinear SPDEs driven by spacetime white noise, J. Funct. Anal., 149(1), 1997, 200–225. · Zbl 0894.60054 · doi:10.1006/jfan.1996.3091
[21] Nualart, D. and Zakai, M., Generalized Brownian functionals and the solution to a stochastic partial differential equation, J. Funct. Anal., 84(2), 1989, 279–296. · Zbl 0682.60046 · doi:10.1016/0022-1236(89)90098-0
[22] Nualart, D., Stochastic calculus with respect to the fractional Brownian motion and applications, Cont. Math., 336, 2003, 3–39. · Zbl 1063.60080
[23] Nualart, D., The Malliavin Calculus and Related Topics, Springer-Verlag, Heidelberg, 2006. · Zbl 1099.60003
[24] Podlubny, I., Fractional Differential Equations, Academic Press, San Diego, 1999. · Zbl 0924.34008
[25] Uemura, H., Construction of the solution of 1-dimensional heat equation with white noise potential and its asymptotic behavior, Stoch. Anal. Appl., 14(4), 1996, 487–506. · Zbl 0876.60043 · doi:10.1080/07362999608809452
[26] Walsh, J., An introduction to stochastic partial differential equations, Ecole d’Eté de Probabilité de Saint Fleur XIV, Lecture Notes in Math., 1180, Springer-Verlag, Berlin, 1986, 265–439.
[27] Zaslavsky, G. M., Fractional kinetic equations for Hamiltonian chaos, Phys. D, 76(1–3), 1994, 110–122. · Zbl 1194.37163 · doi:10.1016/0167-2789(94)90254-2
[28] Zaslavsky, G. M. and Abdullaev, S. S., Scaling properties and anomalous transport of particles inside the stochastic layer, Phys. Rev. E, 51(5), 1995, 3901–3910. · doi:10.1103/PhysRevE.51.3901
[29] Zhang, T. and Zheng, W., SPDEs driven by space-time white noises in high dimensions: absolute continuity of the law and convergence of solutions, Stoch. Stoch. Rep., 75(3), 2003, 103–128. · Zbl 1030.60042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.