×

zbMATH — the first resource for mathematics

Chaotification of discrete dynamical systems in Banach spaces. (English) Zbl 1185.37084

MSC:
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
37N35 Dynamical systems in control
93D15 Stabilization of systems by feedback
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1016/0167-2789(90)90133-A · Zbl 0713.58014 · doi:10.1016/0167-2789(90)90133-A
[2] DOI: 10.2307/2324899 · Zbl 0758.58019 · doi:10.2307/2324899
[3] DOI: 10.1109/81.633897 · doi:10.1109/81.633897
[4] DOI: 10.1142/S021812749600076X · Zbl 0875.93157 · doi:10.1142/S021812749600076X
[5] DOI: 10.1142/9789812798640 · doi:10.1142/9789812798640
[6] DOI: 10.1142/S0218127498001236 · Zbl 0941.93522 · doi:10.1142/S0218127498001236
[7] DOI: 10.1063/1.532670 · Zbl 0959.37027 · doi:10.1063/1.532670
[8] DOI: 10.1007/b79666 · doi:10.1007/b79666
[9] DOI: 10.1016/j.chaos.2004.11.058 · Zbl 1071.37018 · doi:10.1016/j.chaos.2004.11.058
[10] DOI: 10.1017/S0143385797084976 · Zbl 0910.47033 · doi:10.1017/S0143385797084976
[11] Devaney R. L., An Introduction to Chaotic Dynamical Systems (1989) · Zbl 0695.58002
[12] Ditto W. L., Int. J. Bifurcation and Chaos 10 pp 593–
[13] DOI: 10.1006/jmaa.1999.6657 · Zbl 0978.92020 · doi:10.1006/jmaa.1999.6657
[14] Fradkov A. L., Introduction to Control of Oscillations and Chaos (1999)
[15] DOI: 10.1002/int.4550100107 · Zbl 0830.92009 · doi:10.1002/int.4550100107
[16] DOI: 10.1016/S0166-8641(01)00025-6 · Zbl 0997.54061 · doi:10.1016/S0166-8641(01)00025-6
[17] DOI: 10.1109/81.904880 · Zbl 0998.94016 · doi:10.1109/81.904880
[18] Judd K., Control and Chaos: Mathematical Modeling (1997)
[19] DOI: 10.1007/978-3-642-97719-0 · doi:10.1007/978-3-642-97719-0
[20] DOI: 10.1109/TCSI.2001.972844 · Zbl 0991.00029 · doi:10.1109/TCSI.2001.972844
[21] DOI: 10.2307/2318254 · Zbl 0351.92021 · doi:10.2307/2318254
[22] DOI: 10.1016/0022-247X(78)90115-4 · Zbl 0381.58004 · doi:10.1016/0022-247X(78)90115-4
[23] DOI: 10.2307/2691012 · Zbl 1008.37014 · doi:10.2307/2691012
[24] DOI: 10.1142/3987 · doi:10.1142/3987
[25] Robinson C., Dynamical Systems: Stability, Symbolic Dynamics and Chaos (1999) · Zbl 0914.58021
[26] Rudin W., Functional Analysis (1973) · Zbl 0253.46001
[27] DOI: 10.1038/370615a0 · doi:10.1038/370615a0
[28] DOI: 10.1016/j.chaos.2004.02.015 · Zbl 1067.37047 · doi:10.1016/j.chaos.2004.02.015
[29] Shi Y., Sci. China, Ser. A: Math. 34 pp 595–
[30] DOI: 10.1142/S0218127405012351 · Zbl 1082.37031 · doi:10.1142/S0218127405012351
[31] DOI: 10.1142/S0218127499000985 · Zbl 0964.93039 · doi:10.1142/S0218127499000985
[32] Wang X. F., Int. J. Bifurcation and Chaos 10 pp 549–
[33] DOI: 10.1007/978-1-4757-4067-7 · doi:10.1007/978-1-4757-4067-7
[34] DOI: 10.1007/978-1-4612-4838-5 · doi:10.1007/978-1-4612-4838-5
[35] DOI: 10.1142/S0218127404011223 · Zbl 1129.93405 · doi:10.1142/S0218127404011223
[36] DOI: 10.1142/S0218127403008661 · Zbl 1057.37082 · doi:10.1142/S0218127403008661
[37] DOI: 10.1142/S0218127404009168 · Zbl 1099.37507 · doi:10.1142/S0218127404009168
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.