×

zbMATH — the first resource for mathematics

Complex bifurcation structures in the Hindmarsh-Rose neuron model. (English) Zbl 1185.37189

MSC:
37N25 Dynamical systems in biology
92C20 Neural biology
37G99 Local and nonlocal bifurcation theory for dynamical systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1126/science.1097725
[2] Birkhoff G., A Survey of Modern Algebra (1996)
[3] DOI: 10.1142/S0218127498000681 · Zbl 0932.92008
[4] DOI: 10.1016/0167-2789(85)90060-0 · Zbl 0582.92007
[5] DOI: 10.1103/PhysRevLett.92.074104
[6] DOI: 10.1016/S0006-3495(61)86902-6
[7] Foss J., J. Neurophysiol. 84 pp 975–
[8] DOI: 10.1063/1.1594851 · Zbl 1080.92505
[9] DOI: 10.1142/p352
[10] DOI: 10.1103/PhysRevE.72.051922
[11] Guckenheimer J., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (2002)
[12] DOI: 10.1016/S0167-2789(01)00290-1 · Zbl 1026.92008
[13] DOI: 10.1098/rspb.1984.0024
[14] Hirsch M. W., Differerential Equations, Dynamical Systems, and An Introduction to Chaos (2004)
[15] DOI: 10.1113/jphysiol.1952.sp004764
[16] DOI: 10.1142/S0218127405013678 · Zbl 1092.37500
[17] DOI: 10.1103/PhysRevLett.93.214101
[18] DOI: 10.1017/CBO9780511803260 · Zbl 1006.37001
[19] DOI: 10.1103/PhysRevE.72.031909
[20] DOI: 10.1103/PhysRevLett.92.114102
[21] DOI: 10.1038/376021a0
[22] DOI: 10.1038/35067550
[23] DOI: 10.1016/0167-2789(85)90011-9 · Zbl 0585.58037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.