×

zbMATH — the first resource for mathematics

Effects due to a scalar coupling on the particle-antiparticle production in the Duffin-Kemmer-Petiau theory. (English) Zbl 1185.81103
Summary: The Duffin-Kemmer-Petiau formalism with vector and scalar potentials is used to point out a few misconceptions diffused in the literature. It is explicitly shown that the scalar coupling makes the DKP formalism not equivalent to the Klein-Gordon formalism or to the Proca formalism, and that the spin-1 sector of the DKP theory looks formally like the spin-0 sector. With proper boundary conditions, scattering of massive bosons in an arbitrary mixed vector-scalar square step potential is explored in a simple way and effects due to the scalar coupling on the particle-antiparticle production and localization of bosons are analyzed in some detail.

MSC:
81T05 Axiomatic quantum field theory; operator algebras
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Cardoso, T.R., de Castro, A.S.: Rev. Bras. Ens. Fis. 29, 203 (2007)
[2] Cardoso, T.R., Castro, L.B., de Castro, A.S.: Phys. Lett. A 372, 5964 (2008) · Zbl 1223.81092
[3] Chetouani, L., Merad, M., Boudjedaa, T., Lecheheb, A.: Int. J. Theor. Phys. 43, 1147 (2004) · Zbl 1071.81026
[4] Greiner, W.: Relativistic Quantum Mechanics: Wave Equations. Springer, Berlin (1990) · Zbl 0718.35078
[5] Kemmer, N.: Proc. R. Soc. Lond. A 173, 91 (1939) · Zbl 0023.19003
[6] Krajcik, R.A., Nieto, M.M.: Phys. Rev. D 10, 4049 (1974)
[7] Lunardi, J.T., Pimentel, B.M., Teixeira, R.G., Valverde, J.S.: Phys. Lett. A 268, 165 (2000) · Zbl 0948.81563
[8] Merad, M.: Int. J. Theor. Phys. 46, 2105 (2007) · Zbl 1134.81360
[9] Nedjadi, Y., Barret, R.C.: J. Phys. G 19, 87 (1993)
[10] Nedjadi, Y., Barret, R.C.: J. Math. Phys. 35, 4517 (1994) · Zbl 0816.35145
[11] Nowakowski, M.: Phys. Lett. A 244, 329 (1998) · Zbl 0941.81033
[12] Strange, P.: Relativistic Quantum Mechanics with Applications in Condensed Matter and Atomic Physics. Cambridge University Press, Cambridge (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.