×

Auxiliary model identification method for multirate multi-input systems based on least squares. (English) Zbl 1185.93139

Summary: This paper derives state-space models for multirate multi-input sampled-data systems. Based on the corresponding transfer function models, an auxiliary model based recursive least squares algorithm is presented to identify the parameters of the multirate systems from the multirate input-output data. Further, convergence properties of the proposed algorithm are analyzed. Finally, an illustrative example is given.

MSC:

93E12 Identification in stochastic control theory
93C57 Sampled-data control/observation systems
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Lu, N.Y.; Yang, Y.; Gao, F.R.; Wang, F.L., Multirate dynamic inferential modeling for multivariable process, Chemical engineering science, 59, 4, 855-864, (2004)
[2] Yu, B.; Shi, Y.; Huang, H., \(l_2 - l_\infty\) filtering for multirate systems using lifted models, Circuits, systems, and signal processing, 27, 5, 699-711, (2008) · Zbl 1173.93360
[3] Ding, F.; Qiu, L.; Chen, T., Reconstruction of continuous-time systems from their non-uniformly sampled discrete-time systems, Automatica, 45, 2, 324-332, (2009) · Zbl 1158.93365
[4] Li, W.H.; Han, Z.G.; Shah, S.L., Subspace identification for FDI in systems with non-uniformly sampled multirate data, Automatica, 42, 4, 619-627, (2006) · Zbl 1102.93013
[5] Ding, F.; Liu, P.X.; Shi, Y., Convergence analysis of estimation algorithms for dual-rate stochastic systems, Applied mathematics and computation, 176, 1, 245-261, (2006) · Zbl 1095.65056
[6] Ding, F.; Liu, P.X.; Yang, H.Z., Parameter identification and intersample output estimation for dual-rate systems, IEEE transactions on systems, man, and cybernetics, part A: systems and humans, 38, 4, 966-975, (2008)
[7] Sahebsara, M.; Chen, T.; Shah, S.L., Frequency-domain parameter estimation of general multi-rate systems, Computers and chemical engineering, 30, 5, 838-849, (2006)
[8] Li, D.; Shah, S.L.; Chen, T., Identification of fast-rate models from multirate data, International journal of control, 74, 7, 680-689, (2001) · Zbl 1038.93017
[9] Wang, J.D.; Chen, T.; Huang, B., Multirate sampled-data systems: computing fast-rate models, Journal of process control, 14, 1, 79-88, (2004)
[10] Ding, F.; Chen, T., Hierarchical identification of lifted state-space models for general dual-rate systems, IEEE transactions on circuits and systems, 52, 6, 1179-1187, (2005) · Zbl 1374.93342
[11] Shi, Y.; Ding, F.; Chen, T., Multirate crosstalk identification in xdsl systems, IEEE transactions on communication, 54, 10, 1878-1886, (2006)
[12] Han, L.L.; Ding, F., Multi-innovation stochastic gradient algorithms for multi-input multi-output systems, Digital signal processing, 19, 4, 545-554, (2009)
[13] Han, L.L.; Ding, F., Identification for multirate multi-input systems using the multi-innovation identification theory, Computers & mathematics with applications, 57, 9, 1438-1449, (2009) · Zbl 1186.93076
[14] Ding, F.; Chen, T., Combined parameter and output estimation of dual-rate systems using an auxiliary model, Automatica, 40, 10, 1739-1748, (2004) · Zbl 1162.93376
[15] Ding, F.; Liu, P.X.; Liu, G., Auxiliary model based multi-innovation extended stochastic gradient parameter estimation with colored measurement noises, Signal processing, 89, 10, 1883-1890, (2009) · Zbl 1178.94137
[16] Goodwin, G.C.; Sin, K.S., Adaptive filtering prediction and control, (1984), Prentice-hall Englewood Cliffs, NJ · Zbl 0653.93001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.