×

zbMATH — the first resource for mathematics

Synchronization of Takagi-Sugeno fuzzy stochastic discrete-time complex networks with mixed time-varying delays. (English) Zbl 1185.93145
Summary: We propose and investigate a new general model of fuzzy stochastic discrete-time complex networks (SDCNs) described by Takagi-Sugeno (T-S) fuzzy model with discrete and distributed time-varying delays. The proposed model takes some well-studied models as special cases. By employing a new Lyapunov functional candidate, we utilize some stochastic analysis techniques and Kronecker product to deduce delay-dependent synchronization criteria that ensure the mean-square synchronization of the proposed T-S fuzzy SDCNs with mixed time-varying delays. These sufficient conditions are computationally efficient as it can be solved numerically by the LMI toolbox in Matlab. A numerical simulation example is provided to verify the effectiveness and the applicability of the proposed approach.

MSC:
93E15 Stochastic stability in control theory
93C42 Fuzzy control/observation systems
60K30 Applications of queueing theory (congestion, allocation, storage, traffic, etc.)
90B15 Stochastic network models in operations research
90C70 Fuzzy and other nonstochastic uncertainty mathematical programming
Software:
LMI toolbox; Matlab
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Watts, D.J.; Strogatz, S.H., Collective dynamical of’small-world’ networks, Nature, 393, 440-442, (1998) · Zbl 1368.05139
[2] Barabási, A.L.; Albert, R., Emergence of scaling in random networks, Science, 286, 509-512, (1999) · Zbl 1226.05223
[3] Luo, A.C.J., Global transversality, resonance and chaotic dynamics, (2008), World Scientific New Jersey · Zbl 1222.37003
[4] Lü, J.; Yu, X.; Chen, G.R.; Cheng, D., Characterizing the synchronizability of small-world dynamical networks, IEEE trans. circuits syst. I, 5116, 4, 787-796, (2004) · Zbl 1374.34220
[5] Wu, C.W.; Chua, L.O., Synchronization in an array of linearly coupled dynamical systems, IEEE trans. circuits syst. I, 42, 8, 430-447, (1995) · Zbl 0867.93042
[6] Wang, X.F.; Chen, G.R., Synchronization in small-word dynamical networks, Int. J. bifur. chaos, 12, 1, 187-192, (2002)
[7] Lü, J.; Chen, G.R., A time-varying complex dynamical network model and its controlled synchronization criteria, IEEE trans. automat. control, 1950, 841-846, (2005) · Zbl 1365.93406
[8] Cao, J.; Wang, Z.; Sun, Y., Synchronization in an array of linearly stochastically coupled networks with time delays, Physica A, 385, 718-728, (2007)
[9] Cao, J.; Chen, G.R.; Li, P., Global synchronization in an array of delayed neural networks with hybrid coupling, IEEE trans. SMC-B, 38, 488-498, (2008)
[10] Yu, W.; Cao, J.; Chen, G.; Lü, J., Local synchronization of a complex network model, IEEE trans. syst., man, cybernet. B, 39, 230-241, (2009)
[11] Tang, Y.; Fang, J.; Miao, Q., On the exponential synchronization of stochastic jumping chaotic neural networks with mixed delays and sector-bounded non-linearities, Neurocomputing, 72, 1694-1701, (2009)
[12] Tang, Y.; Qiu, R.H.; Fang, J.; Miao, Q.; Xia, M., Adaptive lag synchronization in unknown stochastic chaotic neural networks with discrete and distributed time-varying delays, Phys. lett. A, 372, 4425-4433, (2008) · Zbl 1221.82078
[13] Tang, Y.; Wang, Z.D.; Fang, J., Pinning control of fractional-order weighted complex networks, Chaos, 19, 013112, (2009) · Zbl 1311.34018
[14] Liang, J.; Wang, Z.D.; Liu, Y.; Liu, X., Global synchronization control of general delayed discrete-time networks with stochastic coupling and disturbances, IEEE trans. SMC-part B, 38, 1073-1083, (2008)
[15] Liu, Y.; Wang, Z.D.; Liu, X., State estimation for discrete-time Markovian jumping neural networks with mixed mode-dependent delays, Phys. lett. A, 372, 7147-7155, (2008) · Zbl 1227.92002
[16] Liu, Y.; Wang, Z.D.; Liang, J.; Liu, X., Synchronization and state estimation for discrete-time complex networks with distributed delays, IEEE trans. SMC-part B, 38, 1314-1325, (2008)
[17] Liang, J.; Wang, Z.D.; Liu, Y.; Liu, X., Robust synchronization of an array of coupled stochastic discrete-time delayed neural networks, IEEE trans. neural networks, 19, 1910-1921, (2008)
[18] Lu, W.L.; Chen, T.P., Synchronization of coupled connected neural networks with delays, IEEE trans. circuits syst. I, 51, 2491-2503, (2004) · Zbl 1371.34118
[19] Lu, W.L.; Chen, T.P., Synchronization analysis of linearly coupled networks of discrete time systems, Phys. D: nonlinear phenomena, 198, 148-168, (2004) · Zbl 1071.39011
[20] Bucolo, M.; Fazzino, S.; La Rosa, M.; Fortuna, L., Small-world networks of fuzzy chaotic oscillators, Chaos, solitons fractals, 17, 557, (2003) · Zbl 1036.94544
[21] Ham, C.; Qu, Z.; Johason, R., Robust fuzzy control for robot manipulators, IEE proc. control theory appl., 147, 212-216, (2000)
[22] Hsu, F.; Fu, L., Intelligent robot deburring using adaptive fuzzy hybrid position/force control, IEEE trans. robotics automat., 16, 325-335, (2000)
[23] Lin, F.; Wai, R., Robust recurrent fuzzy neural network control for linear synchronous motor drive system, Neurocomputing, 50, 365-390, (2003) · Zbl 1006.68824
[24] Takagi, T.; Sugeno, M., Fuzzy identification of systems and its applications to modeling and control, IEEE trans. SMC, 15, 116-132, (1985) · Zbl 0576.93021
[25] Zhang, B.Y.; Xu, S.Y.; Zong, G.D.; Zou, Y., Delay-dependent stabilization for stochastic fuzzy systems with time delays, Fuzzy sets syst., 158, 2238-2250, (2007) · Zbl 1122.93051
[26] Lou, X.; Cui, B., Robust asymptotic stability of uncertain fuzzy BAM neural networks with time-varying delays, Fuzzy sets syst., 158, 2746-2756, (2007) · Zbl 1133.93366
[27] Y. Zhao, H. Gao, J. Lam, Baozhu Du, Stability and stabilization of delayed T-S fuzzy systems: a delay partitioning approach, IEEE Trans. Fuzzy Syst., in press.
[28] Wei, G.; Feng, G.; Wang, Z., Robust \(\operatorname{H}_\infty\) control for discrete-time fuzzy systems with infinite distributed delays, IEEE trans. fuzzy syst., 17, 1, 224-232, (2009)
[29] Yue, D.; Tian, E.; Zhang, Y.; Peng, C., Delay-distribution-dependent stability and stabilization of T-S fuzzy systems with probabilistic interval delay, IEEE trans. SMC-B, 39, 503-516, (2009)
[30] Lin, C.; Wang, Q.G.; Lee, Y.; He, T.H.; Chen, B., Observer-based \(\operatorname{H}_\infty\) fuzzy control design for T-S fuzzy systems with state delays, Automatica, 44, 3, 868-874, (2008) · Zbl 1283.93164
[31] Chen, B.; Liu, X.P., Delay-dependent robust \(H_\infty\) control for T-S fuzzy systems with time delay, IEEE trans. fuzzy syst., 13, 4, 544-556, (2005)
[32] Yoneyama, J., New delay-dependent approach to robust stability and stabilization for takagi – sugeno fuzzy time-delay systems, Fuzzy sets syst., 158, 2225-2337, (2007) · Zbl 1122.93050
[33] Zhang, B.; Xu, S., Delay-dependent robust \(\operatorname{H}_\infty\) control for uncertain discrete-time fuzzy systems with time-varying delays, IEEE trans. fuzzy syst., 17, 809-823, (2009)
[34] Feng, G.; Chen, M.; Sun, D.; Zhang, T.J., Approaches to robust filtering design of discrete time fuzzy dynamic systems, IEEE trans. fuzzy syst., 16, 2, 331-340, (2008)
[35] Zhang, H.G.; Yang, D.D.; Chai, T.Y., Guaranteed cost networked control for T-S fuzzy systems with time delays, IEEE trans. SMC part C, 37, 2, 160-172, (2007)
[36] Wu, H.; Li, H.X., New approach to delay-dependent stability analysis and stabilization for continuous-time fuzzy control systems with time-varying delay, IEEE trans. fuzzy syst., 15, 3, 482-493, (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.