×

Shape optimization for low Neumann and Steklov eigenvalues. (English) Zbl 1186.35121

Summary: We give an overview of results on shape optimization for low eigenvalues of the Laplacian on bounded planar domains with Neumann and Steklov boundary conditions. These results share a common feature: they are proved using methods of complex analysis. In particular, we present modernized proofs of the classical inequalities due to Szegö and Weinstock for the first nonzero Neumann and Steklov eigenvalues. We also extend the inequality for the second nonzero Neumann eigenvalue, obtained recently by Nadirashvili and the authors, to nonhomogeneous membranes with log-subharmonic densities. In the homogeneous case, we show that this inequality is strict, which implies that the maximum of the second nonzero Neumann eigenvalue is not attained in the class of simply connected membranes of a given mass. The same is true for the second nonzero Steklov eigenvalue, as follows from our results on the Hersch-Payne-Schiffer inequalities.

MSC:

35P15 Estimates of eigenvalues in context of PDEs
35J25 Boundary value problems for second-order elliptic equations
30E25 Boundary value problems in the complex plane
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Henrot, Extremum Problems for Eigenvalues of Elliptic Operators (2006) · Zbl 1109.35081
[2] Szegö, Inequalities for certain eigenvalues of a membrane of given area, Journal of Rational Mechanics and Analysis 3 pp 343– (1954) · Zbl 0055.08802
[3] Weinberger, An isoperimetric inequality for the N-dimensional free membrane problem, Journal of Rational Mechanics and Analysis 5 pp 633– (1956) · Zbl 0071.09902
[4] Weinstock, Inequalities for a classical eigenvalue problem, Journal of Rational Mechanics and Analysis 3 pp 745– (1954) · Zbl 0056.09801
[5] Bandle, Über des Stekloffsche Eigenwertproblem: Isoperimetrische Ungleichungen für symmetrische Gebiete, Zeitschrift für Angewandte Mathematik und Physik 19 pp 627– (1968) · Zbl 0157.42802
[6] Brock, An isoperimetric inequality for eigenvalues of the Stekloff problem, Zeitschrift für Angewandte Mathematik und Mechanik 81 pp 69– (2001) · Zbl 0971.35055
[7] Dittmar, Sums of reciprocal Stekloff eigenvalues, Mathematische Nachrichten 268 pp 44– (2004) · Zbl 1054.35041
[8] Edward, An inequality for Steklov eigenvalues for planar domains, Zeitschrift für Angewandte Mathematik und Physik 45 pp 493– (1994)
[9] Hersch, Extremal principles and isoperimetric inequalities for some mixed problems of Stekloff’s type, Zeitschrift für Angewandte Mathematik und Physik 19 pp 802– (1968) · Zbl 0165.12603
[10] Hersch, Some inequalities for Stekloff eigenvalues, Archive for Rational Mechanics and Analysis 57 pp 99– (1974)
[11] Henrot, Some isoperimetric inequalities with application to the Stekloff problem, Journal of Convex Analysis 15 (3) pp 581– (2008) · Zbl 1155.26019
[12] Girouard, Maximization of the second positive Neumann eigenvalue for planar domains, Journal of Differential Geometry (2009) · Zbl 1186.35120
[13] Girouard, On the Hersch-Payne-Schiffer inequalities for Steklov eigenvalues, Functional Analysis and its Applications pp 1– (2009)
[14] Polya, Induction and Analogy in Mathematics. Mathematics and Plausible Reasoning I (1954)
[15] Kröger, Upper bounds for the Neumann eigenvalues on a bounded domain in Euclidean space, Journal of Functional Analysis 106 (2) pp 353– (1992) · Zbl 0777.35044
[16] Faber G. Beweis, dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt. Sitzungberichte der mathematisch-physikalischen Klasse der Bayerischen Akademie der Wissenschaften zu München Jahrgang, 1923; 169-172.
[17] Krahn, Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises, Mathematische Annalen 94 pp 97– (1924) · JFM 51.0356.05
[18] Krahn, Über Minimaleigenschaften der Kugel in drei und mehr Dimensionen, Acta Comm. Unic. Dorpat A9 pp 1– (1926) · JFM 52.0510.03
[19] Chavel, Eigenvalues in Riemannian Geometry (1984)
[20] Bandle, Isoperimetric inequality for some eigenvalues of an inhomogeneous, free membrane, SIAM Journal on Applied Mathematics 22 pp 142– (1972) · Zbl 0237.35069
[21] Bandle, Isoperimetric Inequalities and Applications (1980)
[22] Dubrovin, Modern Geometry: Methods and Applications 1 (1992)
[23] Colbois, Extremal eigenvalues of the Laplacian in a conformal class of metrics: the ’conformal spectrum’, Annals of Global Analysis and Geometry 24 (4) pp 337– (2003) · Zbl 1036.58026
[24] Hersch, Quatre propriétés isopérimétriques de membranes sphériques homogènes, Comptes Rendus de l’Academie des Sciences Paris Séries A-B 270 pp A1645– (1970)
[25] Nadirashvili, Isoperimetric inequality for the second eigenvalue of a sphere, Journal of Differential Geometry 61 (2) pp 335– (2002) · Zbl 1071.58024
[26] Schoen, Lectures on Differential Geometry (1994)
[27] Gromov, Differential Geometry and Topology pp 90– (1993)
[28] Levin, Lectures on Entire Functions (1996)
[29] Jost, Partial Differential Equations (2002)
[30] Jimbo, Remarks on the behavior of certain eigenvalues on a singularly perturbed domain with several thin channels, Communications in Partial Differential Equations 17 (3-4) pp 523– (1992) · Zbl 0766.35029
[31] Anné, A note on the generalized dumbbell problem, Proceedings of the American Mathematical Society 123 (8) pp 2595– (1995) · Zbl 0829.58044
[32] Hempel, The essential spectrum of Neumann-Laplacians on some bounded singular domains, Journal of Functional Analysis 102 (2) pp 448– (1991) · Zbl 0741.35043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.