×

zbMATH — the first resource for mathematics

Improved generalized cell mapping for global analysis of dynamical systems. (English) Zbl 1186.37097
Three main parts of generalized cell mapping are improved for global analysis. A simple method, which is not based on the theory of digraphs, is presented to locate complete self-cycling sets that correspond to attractors and unstable invariant sets involving saddle, unstable periodic orbit and chaotic saddle. Refinement for complete self-cycling sets is developed to locate attractors and unstable invariant sets with high degree of accuracy, which can start with a coarse cell structure. A nonuniformly interior-and-boundary sampling technique is used to make the refinement robust. For dissipative dynamical systems, a controlled boundary sampling technique is presented to make generalized cell mapping method with refinement extremely accurate to obtain invariant sets. Recursive laws of group absorption probability and expected absorption time are introduced into generalized cell mapping, and then an optimal order for quantitative analysis of transient cells is established, which leads to the minimal computational work. The improved method is applied to study the dynamics of the forced Duffing system and the pendulum equation to show its effectiveness.

MSC:
37M25 Computational methods for ergodic theory (approximation of invariant measures, computation of Lyapunov exponents, entropy, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hsu C S. Cell-to-Cell Mapping: A Method of Global Analysis for Nonlinear Systems. Tokyo: Springer-Verlag, 1987 · Zbl 0632.58002
[2] Conley C, Easton R. Isolated invariant sets and isolating blocks. Trans Amer Math Soc, 1971, 158(1): 35–61 · Zbl 0223.58011 · doi:10.1090/S0002-9947-1971-0279830-1
[3] Mischaikow K. Conley index theory. Lecture Notes in Math, 1995, 1609: 119–207 · Zbl 0847.58062 · doi:10.1007/BFb0095240
[4] Mischaikow K. Topological techniques for efficient rigorous computation in dynamics. Acta Numer, 2002, 11: 435–477 · Zbl 1123.37328 · doi:10.1017/S0962492902000065
[5] Kalies W D, Mischaikow K, van der Vorst R C A M. An algorithmic approach to chain recurrence. Found Comput Math, 2005, 5(4): 409–449 · Zbl 1099.37010 · doi:10.1007/s10208-004-0163-9
[6] Collins P. Forcing relations for homoclinic orbits of the smale horseshoe map. Exp Math, 2005, 14(1): 75–86 · Zbl 1107.37031 · doi:10.1080/10586458.2005.10128909
[7] Osipenko G. Symbolic image, hyperbolicity, and structural stability. J Dyn Diff Eqns, 2003, 15(2–3): 427–450 · Zbl 1034.37009 · doi:10.1023/B:JODY.0000009742.70460.f2
[8] Collins P. Symbolic dynamics from homoclinic tangles. Int J Bifur Chaos, 2002, 12(3): 605–617 · Zbl 1044.37035 · doi:10.1142/S0218127402004565
[9] Osipenko G, Campbell S. Applied symbolic dynamics: Attractors and filtrations. Discrete Contin Dyn Syst, 1999, 5(1–2): 43–60 · Zbl 0984.37028
[10] Ott E. Chaos in Dynamical Systems. Cambridge: Cambridge University Press (Chapter 5), 1993 · Zbl 0792.58014
[11] Hsu C S. A theory of cell-to-cell mapping dynamical systems. ASME J Appl Mech, 1980, 47(3): 931–939 · Zbl 0452.58019 · doi:10.1115/1.3153816
[12] Hsu C S. A generalized theory of cell to cell mapping for nonlinear dynamical systems. ASME J Appl Mech, 1981, 48(3): 634–642 · Zbl 0482.70017 · doi:10.1115/1.3157686
[13] Hsu C S. Global analysis by cell mapping. Int J Bifur Chaos, 1992, 2(4): 727–771 · Zbl 0870.58034 · doi:10.1142/S0218127492000422
[14] Tonue B H, Gu K. Interpolated cell mapping of dynamical systems. ASME J Appl Mech, 1988, 55(2): 461–466 · Zbl 0666.70019 · doi:10.1115/1.3173700
[15] Jiang J, Xu J X. A method of point mapping under cell reference for global analysis of nonlinear dynamical systems. Phys Lett A, 1994, 188(2): 137–145 · Zbl 0941.37502 · doi:10.1016/0375-9601(84)90008-2
[16] Nusse H E, York J A. A numerical procedure for finding accessible trajectories on basin boundaries. Nonlinearity, 1991, 4(4): 1183–1212 · Zbl 0739.58038 · doi:10.1088/0951-7715/4/4/008
[17] Nusse H E, Yorke J A. A procedure for finding numerical trajectories on chaotic saddles. Phys D, 1989, 36(1-2): 137–156 · Zbl 0728.58027 · doi:10.1016/0167-2789(89)90253-4
[18] Kantz H, Grassberger P. Repellers, semi-attractors, and long-lived chaotic transients. Phys D, 1985, 17(1): 75–86 · Zbl 0597.58017 · doi:10.1016/0167-2789(85)90135-6
[19] Hsu C S. Global analysis of dynamical systems using posets and digraphs. Int J Bifur Chaos, 1995, 5(4): 1085–1118 · Zbl 0886.58060 · doi:10.1142/S021812749500079X
[20] Xu J X, Hong L. Generalized cell mapping digraph method for global analysis of nonlinear dynamical systems. Acta Mech Sinica (in Chinese), 1999, 31(6): 724–730
[21] Hong L, Xu J X. Crises and chaotic transients studied by the generalized cell mapping digraph method. Phys Lett A, 1999, 262(4–5): 361–375 · Zbl 0940.37012 · doi:10.1016/S0375-9601(99)00669-6
[22] Xu W, He Q, Fang T, et al. Global analysis of stochastic bifurcation in Duffing system. Int J Bifur Chaos, 2003, 13(10): 3115–3123 · Zbl 1078.37512 · doi:10.1142/S021812740300848X
[23] Hong L, Sun J Q. Bifurcations of forced oscillators with fuzzy uncertainties by the generalized cell mapping method. Chaos solitons fractals, 2006, 27(4): 895–904 · Zbl 1101.37053 · doi:10.1016/j.chaos.2005.04.118
[24] Sun J Q, Hong L. Bifurcations of fuzzy nonlinear dynamical systems. Commun Nonlinear Sci Numer Simul, 2006, 11(1): 1–12 · Zbl 1078.37049 · doi:10.1016/j.cnsns.2004.11.001
[25] Hsu C S, Chiu H M. Global analysis of a system with multiple responses including a strange attractor. J sound vib, 1987, 114(2): 203–218 · Zbl 1235.70121 · doi:10.1016/S0022-460X(87)80148-7
[26] Dellnitz M, Hohmann A. A subdivision algorithm for the computation of unstable manifolds and global attractors. Numer Math, 1997, 75(3): 293–317 · Zbl 0883.65060 · doi:10.1007/s002110050240
[27] Dellnitz M, Junge O, Rumpf M, et al. The computation of an unstable invariant set inside a cylinder containing a knotted flow. In: Proceedings of the Equadiff 99, World Scientific, 2000. 1053–1059 · Zbl 0965.65141
[28] Dellnitz M, Hohmann A, Junge O, et al. Exploring invariant sets and invariant measures. Chaos, 1997, 7(2): 221–228 · Zbl 0938.37056 · doi:10.1063/1.166223
[29] Guder R, Dellnitz M, Kreuzer E. An adaptive method for the approximation of the generalized cell mapping. Chaos Solitons Fractals, 1997, 8(4): 525–534 · Zbl 0935.37055 · doi:10.1016/S0960-0779(96)00118-X
[30] Hobson D. An efficient method for computing invariant manifolds of planar maps. J Comput Phys, 1993, 104(1): 14–22 · Zbl 0768.65025 · doi:10.1006/jcph.1993.1002
[31] Lu D J. Stochastic Processes and Applications. Beijing: Tsinghua University Press, 1986
[32] Sedgewick R. Algorithms in C++: Graph Algorithms (Part 5). Addison Wesley, 2002
[33] Baier G, Klein M. Maximum hyperchaos in generalized Hénon maps. Phys Lett A, 1990, 151(6–7): 281–284 · doi:10.1016/0375-9601(90)90283-T
[34] Grebogi C, Ott E, Yorke J A. Chaotic attractors in crisis. Phys Rev Lett, 1982, 48(22): 1507–1510 · doi:10.1103/PhysRevLett.48.1507
[35] FitzHugh R. Impulses and physiologica states in theoretical models of nerve membrane. Biophys J, 1961, 1(6): 445–466 · doi:10.1016/S0006-3495(61)86902-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.