×

Non-crossing partition lattices in finite real reflection groups. (English) Zbl 1187.20051

Summary: For a finite real reflection group \(W\) with Coxeter element \(\gamma\) we give a case-free proof that the closed interval \([I,\gamma]\) forms a lattice in the partial order on \(W\) induced by reflection length. Key to this is the construction of an isomorphic lattice of spherical simplicial complexes. We also prove that the greatest element in this latter lattice embeds in the type \(W\) simplicial generalised associahedron, and we use this fact to give a new proof that the geometric realisation of this associahedron is a sphere.

MSC:

20F55 Reflection and Coxeter groups (group-theoretic aspects)
05E15 Combinatorial aspects of groups and algebras (MSC2010)
05A18 Partitions of sets
06A07 Combinatorics of partially ordered sets
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Christos A. Athanasiadis and Victor Reiner, Noncrossing partitions for the group \?_{\?}, SIAM J. Discrete Math. 18 (2004), no. 2, 397 – 417. · Zbl 1085.06001
[2] David Bessis, François Digne, and Jean Michel, Springer theory in braid groups and the Birman-Ko-Lee monoid, Pacific J. Math. 205 (2002), no. 2, 287 – 309. · Zbl 1056.20023
[3] David Bessis, The dual braid monoid, Ann. Sci. École Norm. Sup. (4) 36 (2003), no. 5, 647 – 683 (English, with English and French summaries). · Zbl 1064.20039
[4] Mladen Bestvina, Non-positively curved aspects of Artin groups of finite type, Geom. Topol. 3 (1999), 269 – 302. · Zbl 0998.20034
[5] Joan Birman, Ki Hyoung Ko, and Sang Jin Lee, A new approach to the word and conjugacy problems in the braid groups, Adv. Math. 139 (1998), no. 2, 322 – 353. · Zbl 0937.20016
[6] Nicolas Bourbaki, Lie groups and Lie algebras. Chapters 4 – 6, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002. Translated from the 1968 French original by Andrew Pressley. · Zbl 1120.17002
[7] Thomas Brady, Artin groups of finite type with three generators, Michigan Math. J. 47 (2000), no. 2, 313 – 324. · Zbl 0996.20022
[8] Thomas Brady, A partial order on the symmetric group and new \?(\?,1)’s for the braid groups, Adv. Math. 161 (2001), no. 1, 20 – 40. · Zbl 1011.20040
[9] Thomas Brady and Colum Watt, A partial order on the orthogonal group, Comm. Algebra 30 (2002), no. 8, 3749 – 3754. · Zbl 1018.20040
[10] Thomas Brady and Colum Watt, \?(\?,1)’s for Artin groups of finite type, Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part I (Haifa, 2000), 2002, pp. 225 – 250. · Zbl 1053.20034
[11] R. Charney, J. Meier, and K. Whittlesey, Bestvina’s normal form complex and the homology of Garside groups, Geom. Dedicata 105 (2004), 171 – 188. · Zbl 1064.20044
[12] M. J. Dyer, Hecke algebras and shellings of Bruhat intervals, Compositio Math. 89 (1993), no. 1, 91 – 115. · Zbl 0817.20045
[13] Sergey Fomin and Andrei Zelevinsky, \?-systems and generalized associahedra, Ann. of Math. (2) 158 (2003), no. 3, 977 – 1018. · Zbl 1057.52003
[14] F. A. Garside, The braid group and other groups, Quart. J. Math. Oxford Ser. (2) 20 (1969), 235 – 254. · Zbl 0194.03303
[15] Richard Kane, Reflection groups and invariant theory, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, vol. 5, Springer-Verlag, New York, 2001. · Zbl 0986.20038
[16] G. Kreweras, Sur les partitions non croisées d’un cycle, Discrete Math. 1 (1972), no. 4, 333 – 350 (French). · Zbl 0231.05014
[17] Victor Reiner, Non-crossing partitions for classical reflection groups, Discrete Math. 177 (1997), no. 1-3, 195 – 222. · Zbl 0892.06001
[18] Robert Steinberg, Finite reflection groups, Trans. Amer. Math. Soc. 91 (1959), 493 – 504. · Zbl 0092.13904
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.