zbMATH — the first resource for mathematics

Some comparison inequalities for generalized Muirhead and identric means. (English) Zbl 1187.26018
Summary: For \(x,y>0\), \(a,b\in\mathbb R\), with \(a+b\neq0\), the generalized Muirhead mean \(M(a,b;x,y)\) with parameters \(a\) and \(b\) and the identric mean \(I(x,y)\) are defined by \(M(a,b;x,y)= ((x^ay^b+x^by^a)/2)^{1/(a+b)}\) and \(I(x,y)= (1/e)(y^y/x^x)^{1/(y-x)}\), \(x\neq y\), \(I(x,y)=x\), \(x=y\), respectively. In this paper, the following results are established:
\(M(a,b;x,y)> I(x,y)\) for all \(x,y>0\) with \(x\neq y\) and \((a,b)\in \{(a,b)\in\mathbb R^2: a+b>0\), \(ab\leq 0\), \(2(a-b)^2 -3(a+b)+1\geq 0\), \(3(a-b)^2- 2(a+b)\geq 0\}\);
\(M(a,b;x,y)< I(x,y)\) for all \(x,y>0\) with \(x\neq y\) and \((a,b)\in \{(a,b)\in\mathbb R^2: a\geq 0\), \(b\geq 0\), \(3(a-b)^2- 2(a+b)\leq 0\}\cup \{(a,b)\in\mathbb R^2:a+b<0\}\);
if \((a,b)\in\{(a,b)\in\mathbb R^2:a>0\), \(b>0\), \(3(a-b)^2- 2(a+b)>0\}\cup \{(a,b)\in\mathbb R^2:ab<0\), \(3(a-b)^2- 2(a+b)<0\}\), then there exist \(x_1,y_1,x_2,y_2>0\) such that \(M(a,b;x_1,y_1)> I(x_1,y_1)\) and \(M(a,b;x_2,y_2)< I(x_2,y_2)\).

26E60 Means
Full Text: DOI EuDML
[1] Trif, T, Monotonicity, comparison and Minkowski’s inequality for generalized muirhead means in two variables, Mathematica, 48(71), 99-110, (2006) · Zbl 1150.26360
[2] Hardy GH, Littlewood JE, Pólya G: Inequalties. Cambridge University Press, Cambridge, UK; 1934.
[3] Chu Y-M, Xia W-F: The Schur convexity for the generalized Muirhead mean. to appear in Bulletin mathématique de la Société des Sciences Mathématiques de Roumanie to appear in Bulletin mathématique de la Société des Sciences Mathématiques de Roumanie · Zbl 0241.33001
[4] Qi, F; Guo, B-N, An inequality between ratio of the extended logarithmic means and ratio of the exponential means, Taiwanese Journal of Mathematics, 7, 229-237, (2003) · Zbl 1050.26020
[5] Alzer, H; Qiu, S-L, Inequalities for means in two variables, Archiv der Mathematik, 80, 201-215, (2003) · Zbl 1020.26011
[6] Alzer, H, Ungleichungen für mittelwerte, Archiv der Mathematik, 47, 422-426, (1986) · Zbl 0585.26014
[7] Sándor, J, Inequalities for means, 87-90, (1990) · Zbl 0966.26505
[8] Sándor, J, On the identric and logarithmic means, Aequationes Mathematicae, 40, 261-270, (1990) · Zbl 0717.26014
[9] Sándor, J, A note on some inequalities for means, Archiv der Mathematik, 56, 471-473, (1991) · Zbl 0693.26005
[10] Sándor, J, On certain identities for means, Universitatis Babeş-Bolyai. Studia. Mathematica, 38, 7-14, (1993) · Zbl 0831.26013
[11] Sándor, J, On refinements of certain inequalities for means, Archivum Mathematicum, 31, 279-282, (1995) · Zbl 0847.26015
[12] Sándor, J, Two inequalities for means, International Journal of Mathematics and Mathematical Sciences, 18, 621-623, (1995) · Zbl 0827.26016
[13] Sándor, J; Raşa, I, Inequalities for certain means in two arguments, Nieuw Archief voor Wiskunde. Vierde Serie, 15, 51-55, (1997) · Zbl 0938.26011
[14] Bullen PS, Mitrinović DS, Vasić PM: Means and Their Inequalities, Mathematics and Its Applications (East European Series). Volume 31. D. Reidel, Dordrecht, The Netherlands; 1988:xx+459.
[15] Carlson, BC, The logarithmic Mean, The American Mathematical Monthly, 79, 615-618, (1972) · Zbl 0241.33001
[16] Pittenger, AO, Inequalities between arithmetic and logarithmic means, Publikacije Elektrotehničkog Fakulteta. Serija Matematika i Fizika, 1980, 15-18, (1981) · Zbl 0469.26009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.