×

Common fixed points for maps on topological vector space valued cone metric spaces. (English) Zbl 1187.54032

Summary: We introduce a notion of topological vector space valued cone metric space and obtain some common fixed point results. Our results generalize some recent results in the literature.

MSC:

54H25 Fixed-point and coincidence theorems (topological aspects)
47H10 Fixed-point theorems
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] L.-G. Huang and X. Zhang, “Cone metric spaces and fixed point theorems of contractive mappings,” Journal of Mathematical Analysis and Applications, vol. 332, no. 2, pp. 1468-1476, 2007. · Zbl 1118.54022
[2] M. Abbas and G. Jungck, “Common fixed point results for noncommuting mappings without continuity in cone metric spaces,” Journal of Mathematical Analysis and Applications, vol. 341, no. 1, pp. 416-420, 2008. · Zbl 1147.54022
[3] D. Ilić and V. Rako, “Common fixed points for maps on cone metric space,” Journal of Mathematical Analysis and Applications, vol. 341, no. 2, pp. 876-882, 2008. · Zbl 1156.54023
[4] S. Radenović, “Common fixed points under contractive conditions in cone metric spaces,” Computers & Mathematics with Applications, vol. 58, no. 6, pp. 1273-1278, 2009. · Zbl 1189.65119
[5] P. Vetro, “Common fixed points in cone metric spaces,” Rendiconti del Circolo Matematico di Palermo, vol. 56, no. 3, pp. 464-468, 2007. · Zbl 1196.54086
[6] Sh. Rezapour and R. Hamlbarani, “Some notes on the paper: “Cone metric spaces and fixed point theorems of contractive mappings”,” Journal of Mathematical Analysis and Applications, vol. 345, no. 2, pp. 719-724, 2008. · Zbl 1145.54045
[7] M. Arshad, A. Azam, and P. Vetro, “Some common fixed point results in cone metric spaces,” Fixed Point Theory and Applications, vol. 2009, Article ID 493965, 11 pages, 2009. · Zbl 1167.54313
[8] A. Azam, M. Arshad, and I. Beg, “Common fixed points of two maps in cone metric spaces,” Rendiconti del Circolo Matematico di Palermo, vol. 57, no. 3, pp. 433-441, 2008. · Zbl 1197.54056
[9] B. S. Choudhury and N. Metiya, “Fixed points of weak contractions in cone metric spaces,” Nonlinear Analysis: Theory, Methods & Applications, vol. 72, no. 3-4, pp. 1589-1593, 2010. · Zbl 1191.54036
[10] A. Azam, M. Arshad, and I. Beg, “Banach contraction principle on cone rectangular metric spaces,” Applicable Analysis and Discrete Mathematics, vol. 3, no. 2, pp. 236-241, 2009. · Zbl 1274.54113
[11] A. Azam and M. Arshad, “Common fixed points of generalized contractive maps in cone metric spaces,” Bulletin of the Iranian Mathematical Society, vol. 35, no. 2, pp. 255-264, 2009. · Zbl 1201.47052
[12] P. Raja and S. M. Vaezpour, “Some extensions of Banach/s contraction principle in complete cone metric spaces,” Fixed Point Theory and Applications, vol. 2008, Article ID 768294, 11 pages, 2008. · Zbl 1148.54339
[13] S. Janković, Z. Kadelburg, S. Radenović, and B. E. Rhoades, “Assad-Kirk-type fixed point theorems for a pair of nonself mappings on cone metric spaces,” Fixed Point Theory and Applications, vol. 2009, Article ID 761086, 16 pages, 2009. · Zbl 1186.54035
[14] Z. Kadelburg, S. Radenović, and B. Rosić, “Strict contractive conditions and common fixed point theorems in cone metric spaces,” Fixed Point Theory and Applications, vol. 2009, Article ID 173838, 14 pages, 2009. · Zbl 1179.54062
[15] H. H. Schaefer, Topological Vector Spaces, vol. 3 of Graduate Texts in Mathematics, Springer, New York, NY, USA, 1971. · Zbl 0217.16002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.