×

zbMATH — the first resource for mathematics

Binary homogeneous nucleation and growth of water-sulfuric acid nanoparticles using a TEMOM model. (English) Zbl 1187.82103
Summary: Binary homogeneous nucleation and growth process of water-sulfuric acid nanoparticles in atmospheric environment is studied using a new developed moment model (i.e., TEMOM model). The underlying mechanisms due to Brownian motion are employed in the general dynamic equation which is further closed by Taylor-expansion technique. The newly proposed model provides high precision and efficiency in studying the present binary nucleation system as compared to exiting models. The competition between nucleation, coagulation and condensation in the whole nucleation and subsequent growth processes is systemically investigated in both cases with background particles and without particles. The results show the nucleation kinetics and aerosol dynamics are strongly dependent of production rate of sulfuric acid, and also dependent of the competition ability to scavenge sulfuric acid between pre-existing particles and nucleated particles.

MSC:
82C40 Kinetic theory of gases in time-dependent statistical mechanics
60J65 Brownian motion
82D80 Statistical mechanics of nanostructures and nanoparticles
86A10 Meteorology and atmospheric physics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Kulmala, M.; Riipinen, I.; Sipilä, M.; Manninen, H. E.; Petäjä, T.; Junninen, H.; Maso, M. D.; Mordas, G.; Mirme, A.; Vana, M.; Hirsikko, A.; Laakso, L.; Harrison, R. M.; Hanson, I.; Leung, C.; Lehtinen, K. E.; Kerminen, V. M.: Toward direct measurement of atmospheric nucleation, Science 318, 89-92 (2007)
[2] Yu, F.; Turco, R.: Case studies of particle formation events observed in boreal forests: implications for nucleation mechanisms, Atmos. chem. Phys. 8, 6085-6102 (2008)
[3] Sorokin, A.; Vancassel, X.; Mirabel, P.: Kinetic model for binary homogeneous nucleation in the H2O – H2SO4 system: comparison with experiments and classical theory of nucleation, J. chem. Phys. 123, No. 244508, 1-6 (2005)
[4] Hanson, D. R.; Lovejoy, E. R.: Measurement of the thermodynamics of the hydrated dimmer and trimer of sulfuric acid, J. phys. Chem. 110, No. 31, 9525-9528 (2006)
[5] Friedlander, S. K.: Smoke, dust and haze: fundamentals of aerosol behavior, (2000)
[6] Korhonen, H.; Lehtinen, K. E. J.; Kulmala, M.: Multicomponent aerosol dynamics model UHMA: model development and validation, Atmos. chem. Phys. 4, 757-771 (2004)
[7] Sihto, S. L.; Vuollekoski, H.; Leppä, J.; Riipinen, I.; Kerminen, V. M.: Aerosol dynamics simulations on the connection of sulphuric acid and new particle formation, Atmos. chem. Phys. discuss. 8, 11363-11394 (2008)
[8] Mcmurry, P. H.: New particle formation in the presence of an aerosol: rates, time scales, and sub-\(0.01\mu m\) size distributions, J. colloid interface sci. 95, No. 1, 72-80 (1983)
[9] Dal Maso, M.; Kulmala, M.; Lehtinen, K. E. J.; Makela, J. M.; Aalto, P.; O’dowd, C. D.: Condensation and coagulation sinks and formation of nucleation mode particles in coastal and boreal forest boundary layers, J. geophys. Res. 107, No. D19, 10 (2002)
[10] Kerminen, V. M.; Kulmala, M.: Analytical formulae connecting the ”real” and the ”apparent” nucleation rate and the nuclei number concentration for atmospheric nucleation events, J. aerosol sci. 33, No. 4, 609-622 (2002)
[11] Mcmurry, P. H.; Fink, M.; Sakurai, H.; Stolzenburg, M. R.; Mauldin, R. L.; Smith, J.; Eisele, F.; Moore, K.; Sjostedt, S.; Tanner, D.; Huey, L. G.; Nowak, J. B.; Edgerton, E.; Voisin, D.: A criterion for new particle formation in the sulfur-rich Atlanta atmosphere, J. geophys. Res. 110, No. D22, D22S02 (2005)
[12] Lee, K. W.; Chen, H.; Gieseke, J. A.: Log-normally preserving size distribution for Brownian coagulation in the free-molecule regime, Aerosol sci. Technol. 3, 53-62 (1984)
[13] Mcgraw, R.: Description of aerosol dynamics by the quadrature method of moments, Aerosol sci. Technol. 27, 255-265 (1997)
[14] Barrett, J. C.; Jheeta, J. S.: Improving the accuracy of the moments method for solving the aerosol general dynamic equation, J. aerosol sci. 27, 1135-1142 (1996)
[15] Frenklach, M.: Method of moments with interpolative closure, Chem. eng. Sci. 57, 2229-2239 (2002)
[16] Yu, M. Z.; Lin, J. Z.; Chan, T. L.: A new moment method for solving the coagulation equation for particles in Brownian motion, Aerosol sci. Technol. 42, 705-713 (2008)
[17] Yu, M. Z.; Lin, J. Z.: Taylor-expansion moment method for agglomerate coagulation due to Brownian motion in the entire size regime, J. aerosol sci. 40, 549-562 (2009)
[18] Lushnikov, A. A.; Kulmala, M.: Kinetics of nucleation controlled formation and condensational growth of disperse particles, Phys. rev. E 63, 061109 (2001)
[19] Wagner, P. E.; Kaller, D.; Vrtala, A.; Lauri, A.; Kulmala, M.; Laaksonen, A.: Nucleation probability in binary heterogeneous nucleation of water – n-propanol vapor mixtures on insoluble and soluble nanoparticles, Phys. rev. E 67, 021605 (2003)
[20] Doyle, G. J.: Self nucleation in the sulfuric acid – water system, J. chem. Phys. 35, 795-799 (1961)
[21] Wilemski, G.: Composition of the critical nucleus in multicomponent vapor nucleation, J. chem. Phys. 80, 1370-1372 (1984)
[22] Kulmala, M.; Laaksonen, A.; Pirjola, L.: Parameterizations for sulfuric acid/water nucleation rates, J. geophys. Res. 103, 8301-8307 (1998)
[23] Vehkamäki, H.; Kulmala, M.; Lehtinen, K. E. J.: Modelling binary homogeneous nucleation of water – sulfuric acid vapours: parameterization for high temperature emissions, Environ. sci. Technol. 37, 3392-3398 (2003)
[24] Vehkamäki, H.; Kulmala, M.; Napari, I.; Lehtinen, K. E. J.: An improved parameterization for sulfuric acid – water nucleation rates for tropospheric and stratospheric conditions, J. geophys. Res. 107, No. D22, AAC3.1-AAC3.10 (2002)
[25] Yu, F.; Wang, Z.; Luo, G.; Turco, R.: Ion-mediated nucleation as an important global source of tropospheric aerosols, Atmos. chem. Phys. 8, 2537-2554 (2008)
[26] Yu, F.; Luo, G.: Simulation of particle size distribution with a global aerosol model: contribution of nucleation to aerosol a CCN number concentrations, Atmos. chem. Phys. discuss 9, 10597-10645 (2009)
[27] Yu, F.: Improved quasi-unary nucleation model for binary H2SO4 – H2O homogeneous nucleation, J. chem. Phys. 127, 054301 (2007)
[28] Yu, F.: Updated H2SO4 – H2O binary homogeneous nucleation look-up tables, J. geophys. Res. 113, No. D24, D24201 (2008)
[29] Uhrner, U.; Von Lowis, S.; Vehkamäki, H.; Wehner, B.; Brasel, S.; Hermann, M.; Stratmann, F.; Kulmala, M.; Wiedensohler, A.: Dilution and aerosol dynamics within a vehicle car exhaust plume – CFD simulations of on-road measurement conditions, Atmos. res. 41, 7440-7461 (2007)
[30] Yu, M. Z.; Lin, J. Z.; Chan, T. L.: Numerical simulation for nucleated vehicle exhaust particulate matters via the TEMOM/LES method, Int. J. Mod. phys. C 20, 399-421 (2009) · Zbl 1419.76389
[31] Lemmetty, M.; Pirjola, L.; Mäkelä, J. M.; Rönkkö, T.; Keskinen, J.: Computation of maximum rate of water – sulphuric acid nucleation in diesel exhaust, J. aerosol sci. 37, 1596-1604 (2006)
[32] Du, H.; Yu, F.: Nanoparticle formation in the exhaust of vehicles running on ultra-low sulfur fuel, Atmos. chem. Phys. 8, 4729-4739 (2008)
[33] Jacobson, M. Z.; Seinfeld, J. H.: Evolution of nanoparticle size and mixing state near the point of emission, Atmos. environ. 38, 1839-1850 (2004)
[34] Jeacher-Voirol, A.; Mirabel, P.: Nucleation rate in a binary mixture of sulfuric acid and water vapor, J. phys. Chem. 92, 3518-3521 (1988)
[35] Fuchs, N.: The mechanics of aerosols, (1964) · Zbl 0178.47403
[36] Upadhyay, R. R.; Ezekoye, O. A.: Evaluation of the 1-point quadrature approximation in QMOM for combined aerosol growth laws, J. aerosol sci. 34, 1665-1683 (2003)
[37] Lee, K. W.; Lee, Y. J.; Han, D. S.: The log-normal size distribution theory for Brownian coagulation in the low Knudsen number regime, J. colloid interface sci. 188, 486-492 (1997)
[38] Seinfeld, J. H.; Pandis, S. N.: Atmosphere chemistry and physics: from air pollution to climate change, (1998)
[39] Pirjola, L.; Kulmala, M.: Modelling the formation of particles in rural, urban and marine conditions, Atmos. res. 46, 321-347 (1998)
[40] Dingenen, R. V.; Raes, F.: Determination of the condensation accommodation coefficient of H2SO4 on H2SO4 – H2O aerosol, Aerosol sci. Technol. 15, 93-106 (1991)
[41] Pratsinis, S. E.: Simultaneous nucleation, condensation, and coagulation in aerosol reactor, J. colloid interface sci. 124, 416-427 (1988)
[42] Lushnikov, A. A.; Kulmala, M.: Nucleation burst in a coagulating system, Phys. rev. E 62, 4932-4939 (2000)
[43] Yu, M. Z.; Lin, J. Z.; Chan, T. L.: Numerical simulation of nanoparticle synthesis in diffusion flame reactor, Powder technol. 181, 9-20 (2008)
[44] Yu, M. Z.; Lin, J. Z.; Chan, T. L.: Effect of precursor loading on non-spherical tio2 nanoparticle synthesis in a diffusion flame reactor, Chem. eng. Sci. 63, 2317-2329 (2008)
[45] Stolzenburg, M. R.; Mcmurry, P. H.; Sakurai, H.; Smith, J. N.; Mauldin, R. L.; Eisele, F. L.; Clement, C. F.: Growth rates of freshly nucleated atmospheric particles in Atlanta, J. geophys. Res. 110, No. D22, D22S05 (2005)
[46] Iida, K.; Stolzenburg, M. R.; Mcmurry, P. H.; Smith, J. N.: Estimating nanoparticle growth rates from size-dependent charged fractions: analysis of new particle formation events in Mexico City, J. geophys. Res. 113, No. D5, 15 (2008)
[47] Mcmarry, P. H.; Friedlander, S. K.: New particle formation in the presence of an aerosol, Atmos. environ. 13, No. 12, 1635-1651 (1979)
[48] Kulmala, M.: How particles nucleate and grow?, Science 302, 1000-1001 (2003)
[49] Vehkamäki, H.; Napari, I.; Kulmala, M.; Noppel, M.: Stable ammonium bisulfate clusters in the atmosphere, Phys. rev. Lett. 93, 148501 (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.