Luo, M. J.; Lin, G. H. Convergence results of the ERM method for nonlinear stochastic variational inequality problems. (English) Zbl 1187.90295 J. Optim. Theory Appl. 142, No. 3, 569-581 (2009). The authors consider the expected residual minimization (ERM) method proposed by M. J. Luo and G. H. Lin [J. Optim. Theory Appl. 140, 103–116 (2009; Zbl 1190.90112)] and continue to study the proposed method for a stochastic variational inequality problem. The function involved is assumed to be nonlinear in this paper. The authors first consider a quasi-Monte Carlo method for the case where the underlying sample space is compact and show that the ERM method is convergent under very mild conditions. Then, a compact approximation approach is presented for the case where the sample space is noncompact. Reviewer: Samir Kumar Neogy (New Delhi) Cited in 14 Documents MSC: 90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming) Keywords:residual functions; quasi-Monte Carlo methods; compact approximations PDF BibTeX XML Cite \textit{M. J. Luo} and \textit{G. H. Lin}, J. Optim. Theory Appl. 142, No. 3, 569--581 (2009; Zbl 1187.90295) Full Text: DOI References: [1] Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, New York (2003) · Zbl 1062.90002 [2] Chen, X., Fukushima, M.: Expected residual minimization method for stochastic linear complementarity problems. Math. Oper. Res. 30, 1022–1038 (2005) · Zbl 1162.90527 · doi:10.1287/moor.1050.0160 [3] Chen, X., Zhang, C., Fukushima, M.: Robust solution of monotone stochastic linear complementarity problems. Math. Program. 117, 51–80 (2009) · Zbl 1165.90012 · doi:10.1007/s10107-007-0163-z [4] Fang, H., Chen, X., Fukushima, M.: Stochastic R 0 matrix linear complementarity problems. SIAM J. Optim. 18, 482–506 (2007) · Zbl 1151.90052 · doi:10.1137/050630805 [5] Lin, G.H., Chen, X., Fukushima, M.: New restricted NCP function and their applications to stochastic NCP and stochastic MPEC. Optimization 56, 641–753 (2007) · Zbl 1172.90455 · doi:10.1080/02331930701617320 [6] Lin, G.H., Fukushima, M.: New reformulations for stochastic complementarity problems. Optim. Methods Softw. 21, 551–564 (2006) · Zbl 1113.90110 · doi:10.1080/10556780600627610 [7] Luo, M.J., Lin, G.H.: Expected residual minimization method for stochastic variational inequality problems. J. Optim. Theory Appl. 140, 103–116 (2009) · Zbl 1190.90112 · doi:10.1007/s10957-008-9439-6 [8] Zhang, C., Chen, X.: Stochastic nonlinear complementarity problem and applications to traffic equilibrium under uncertainty. J. Optim. Theory Appl. 137, 277–295 (2008) · Zbl 1163.90034 · doi:10.1007/s10957-008-9358-6 [9] Fukushima, M.: Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems. Math. Program. 53, 99–110 (1992) · Zbl 0756.90081 · doi:10.1007/BF01585696 [10] Patrick, B.: Probability and Measure. A Wiley-Interscience Publication. Wiley, New York (1995) [11] Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia (1992) · Zbl 0761.65002 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.