zbMATH — the first resource for mathematics

Hopf bifurcation from lines of equilibria without parameters in memristor oscillators. (English) Zbl 1188.34060

34C60 Qualitative investigation and simulation of ordinary differential equation models
34C23 Bifurcation theory for ordinary differential equations
94C05 Analytic circuit theory
34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
34D45 Attractors of solutions to ordinary differential equations
Full Text: DOI
[1] DOI: 10.1109/TCT.1971.1083337 · doi:10.1109/TCT.1971.1083337
[2] DOI: 10.1109/PROC.1976.10092 · doi:10.1109/PROC.1976.10092
[3] DOI: 10.1142/S0218126694000090 · doi:10.1142/S0218126694000090
[4] DOI: 10.1006/jdeq.2000.3779 · Zbl 0978.34035 · doi:10.1006/jdeq.2000.3779
[5] DOI: 10.1142/S0218127400001018 · Zbl 1090.37556 · doi:10.1142/S0218127400001018
[6] DOI: 10.1142/S0218127408022354 · Zbl 1165.94300 · doi:10.1142/S0218127408022354
[7] Johnson R. C., EE Times 1538 pp 30–
[8] DOI: 10.1007/978-1-4757-3978-7 · doi:10.1007/978-1-4757-3978-7
[9] DOI: 10.1142/S0218127409023159 · Zbl 1170.34333 · doi:10.1142/S0218127409023159
[10] DOI: 10.1142/S0218127499000171 · Zbl 0937.37028 · doi:10.1142/S0218127499000171
[11] DOI: 10.1038/nature06932 · doi:10.1038/nature06932
[12] DOI: 10.1038/453042a · doi:10.1038/453042a
[13] DOI: 10.1142/S0218127405011990 · Zbl 1069.94523 · doi:10.1142/S0218127405011990
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.