×

zbMATH — the first resource for mathematics

Allee effect and bistability in a spatially heterogeneous predator-prey model. (English) Zbl 1189.35337
Summary: A spatially heterogeneous reaction-diffusion system modelling predator-prey interaction is studied, where the interaction is governed by a Holling type II functional response. Existence of multiple positive steady states and global bifurcation branches are examined as well as related dynamical behavior. It is found that while the predator population is not far from a constant level, the prey population could be extinguished, persist or blow up depending on the initial population distributions, the various parameters in the system, and the heterogeneous environment. In particular, our results show that when the prey growth is strong, the spatial heterogeneity of the environment can play a dominant role for the presence of the Allee effect. Our mathematical analysis relies on bifurcation theory, topological methods, various comparison principles and elliptic estimates. We combine these methods with monotonicity arguments to the system through the use of some new auxiliary scalar equations, though the system itself does not keep an order structure as the competition system does. Among other things, this allows us to obtain partial descriptions of the dynamical behavior of the system.

MSC:
35Q92 PDEs in connection with biology, chemistry and other natural sciences
35J57 Boundary value problems for second-order elliptic systems
35B32 Bifurcations in context of PDEs
35B09 Positive solutions to PDEs
92D25 Population dynamics (general)
35B40 Asymptotic behavior of solutions to PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] H. Berestycki and P.-L. Lions, Some applications of the method of super and subsolutions, Bifurcation and nonlinear eigenvalue problems (Proc., Session, Univ. Paris XIII, Villetaneuse, 1978) Lecture Notes in Math., vol. 782, Springer, Berlin, 1980, pp. 16 – 41.
[2] H. Berestycki, L. Nirenberg, and S. R. S. Varadhan, The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Comm. Pure Appl. Math. 47 (1994), no. 1, 47 – 92. · Zbl 0806.35129 · doi:10.1002/cpa.3160470105 · doi.org
[3] J. Blat and K. J. Brown, Global bifurcation of positive solutions in some systems of elliptic equations, SIAM J. Math. Anal. 17 (1986), no. 6, 1339 – 1353. · Zbl 0613.35008 · doi:10.1137/0517094 · doi.org
[4] Yi Hong Du and K. J. Brown, Bifurcation and monotonicity in competition reaction-diffusion systems, Nonlinear Anal. 23 (1994), no. 1, 1 – 13. · Zbl 0807.35041 · doi:10.1016/0362-546X(94)90248-8 · doi.org
[5] Robert Stephen Cantrell and Chris Cosner, Diffusive logistic equations with indefinite weights: population models in disrupted environments, Proc. Roy. Soc. Edinburgh Sect. A 112 (1989), no. 3-4, 293 – 318. · Zbl 0711.92020 · doi:10.1017/S030821050001876X · doi.org
[6] Robert Stephen Cantrell and Chris Cosner, Spatial ecology via reaction-diffusion equations, Wiley Series in Mathematical and Computational Biology, John Wiley & Sons, Ltd., Chichester, 2003. · Zbl 1059.92051
[7] A. Casal, J. C. Eilbeck, and J. López-Gómez, Existence and uniqueness of coexistence states for a predator-prey model with diffusion, Differential Integral Equations 7 (1994), no. 2, 411 – 439. · Zbl 0823.35050
[8] Ph. Clément and L. A. Peletier, An anti-maximum principle for second-order elliptic operators, J. Differential Equations 34 (1979), no. 2, 218 – 229. · Zbl 0387.35025 · doi:10.1016/0022-0396(79)90006-8 · doi.org
[9] E. D. Conway, Diffusion and predator-prey interaction: pattern in closed systems, Partial differential equations and dynamical systems, Res. Notes in Math., vol. 101, Pitman, Boston, MA, 1984, pp. 85 – 133. · Zbl 0554.92011
[10] Michael G. Crandall and Paul H. Rabinowitz, Bifurcation from simple eigenvalues, J. Functional Analysis 8 (1971), 321 – 340. · Zbl 0219.46015
[11] Michael G. Crandall and Paul H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch. Rational Mech. Anal. 52 (1973), 161 – 180. · Zbl 0275.47044 · doi:10.1007/BF00282325 · doi.org
[12] E. N. Dancer, On the indices of fixed points of mappings in cones and applications, J. Math. Anal. Appl. 91 (1983), no. 1, 131 – 151. · Zbl 0512.47045 · doi:10.1016/0022-247X(83)90098-7 · doi.org
[13] E. N. Dancer, On positive solutions of some pairs of differential equations, Trans. Amer. Math. Soc. 284 (1984), no. 2, 729 – 743. · Zbl 0524.35056
[14] E. N. Dancer and Yihong Du, Effects of certain degeneracies in the predator-prey model, SIAM J. Math. Anal. 34 (2002), no. 2, 292 – 314. · Zbl 1055.35046 · doi:10.1137/S0036141001387598 · doi.org
[15] P. de Mottoni and F. Rothe, Convergence to homogeneous equilibrium state for generalized Volterra-Lotka systems with diffusion, SIAM J. Appl. Math. 37 (1979), no. 3, 648 – 663. · Zbl 0425.35055 · doi:10.1137/0137048 · doi.org
[16] Yihong Du, Effects of a degeneracy in the competition model. I. Classical and generalized steady-state solutions, J. Differential Equations 181 (2002), no. 1, 92 – 132. · Zbl 1042.35016 · doi:10.1006/jdeq.2001.4074 · doi.org
[17] Yihong Du, Effects of a degeneracy in the competition model. II. Perturbation and dynamical behaviour, J. Differential Equations 181 (2002), no. 1, 133 – 164. · Zbl 1042.35017 · doi:10.1006/jdeq.2001.4075 · doi.org
[18] Yihong Du, Realization of prescribed patterns in the competition model, J. Differential Equations 193 (2003), no. 1, 147 – 179. · Zbl 1274.35137 · doi:10.1016/S0022-0396(03)00056-1 · doi.org
[19] Yihong Du, Spatial patterns for population models in a heterogeneous environment, Taiwanese J. Math. 8 (2004), no. 2, 155 – 182. · Zbl 1097.92057
[20] Yihong Du, Bifurcation and related topics in elliptic problems, Stationary partial differential equations. Vol. II, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2005, pp. 127 – 209. · Zbl 1109.35014 · doi:10.1016/S1874-5733(05)80011-7 · doi.org
[21] Yihong Du, Asymptotic behavior and uniqueness results for boundary blow-up solutions, Differential Integral Equations 17 (2004), no. 7-8, 819 – 834. · Zbl 1150.35369
[22] Yihong Du and Sze-Bi Hsu, A diffusive predator-prey model in heterogeneous environment, J. Differential Equations 203 (2004), no. 2, 331 – 364. · Zbl 1330.35467 · doi:10.1016/j.jde.2004.05.010 · doi.org
[23] Yihong Du and Qingguang Huang, Blow-up solutions for a class of semilinear elliptic and parabolic equations, SIAM J. Math. Anal. 31 (1999), no. 1, 1 – 18. · Zbl 0959.35065 · doi:10.1137/S0036141099352844 · doi.org
[24] Yihong Du and Shujie Li, Positive solutions with prescribed patterns in some simple semilinear equations, Differential Integral Equations 15 (2002), no. 7, 805 – 822. · Zbl 1021.35035
[25] Yihong Du and Yuan Lou, Some uniqueness and exact multiplicity results for a predator-prey model, Trans. Amer. Math. Soc. 349 (1997), no. 6, 2443 – 2475. · Zbl 0965.35041
[26] Yihong Du and Yuan Lou, S-shaped global bifurcation curve and Hopf bifurcation of positive solutions to a predator-prey model, J. Differential Equations 144 (1998), no. 2, 390 – 440. · Zbl 0970.35030 · doi:10.1006/jdeq.1997.3394 · doi.org
[27] Yihong Du and Yuan Lou, Qualitative behaviour of positive solutions of a predator-prey model: effects of saturation, Proc. Roy. Soc. Edinburgh Sect. A 131 (2001), no. 2, 321 – 349. · Zbl 0980.35028 · doi:10.1017/S0308210500000895 · doi.org
[28] Yihong Du and Li Ma, Logistic type equations on \Bbb R^\Bbb N by a squeezing method involving boundary blow-up solutions, J. London Math. Soc. (2) 64 (2001), no. 1, 107 – 124. · Zbl 1018.35045 · doi:10.1017/S0024610701002289 · doi.org
[29] Yihong Du and Junping Shi, A diffusive predator-prey model with a protection zone, J. Differential Equations 229 (2006), no. 1, 63 – 91. · Zbl 1142.35022 · doi:10.1016/j.jde.2006.01.013 · doi.org
[30] Yihong Du and Junping Shi, Some recent results on diffusive predator-prey models in spatially heterogeneous environment, Nonlinear dynamics and evolution equations, Fields Inst. Commun., vol. 48, Amer. Math. Soc., Providence, RI, 2006, pp. 95 – 135. · Zbl 1100.35041
[31] Holling, C. S., Some characteristics of simple types of predation and parasitism. Canadian Entomologist 91 (1959), 385-398.
[32] Jianhua Huang, Gang Lu, and Shigui Ruan, Existence of traveling wave solutions in a diffusive predator-prey model, J. Math. Biol. 46 (2003), no. 2, 132 – 152. · Zbl 1018.92026 · doi:10.1007/s00285-002-0171-9 · doi.org
[33] Philip Korman and Junping Shi, New exact multiplicity results with an application to a population model, Proc. Roy. Soc. Edinburgh Sect. A 131 (2001), no. 5, 1167 – 1182. · Zbl 1200.35148 · doi:10.1017/S0308210500001323 · doi.org
[34] Kurata, Kazuhiro; Shi, Junping, Optimal spatial harvesting strategy and symmetry-breaking. Submitted, (2005). · Zbl 1178.35383
[35] Alexander B. Medvinsky, Sergei V. Petrovskii, Irene A. Tikhonova, Horst Malchow, and Bai-Lian Li, Spatiotemporal complexity of plankton and fish dynamics, SIAM Rev. 44 (2002), no. 3, 311 – 370. · Zbl 1001.92050 · doi:10.1137/S0036144502404442 · doi.org
[36] Shobha Oruganti, Junping Shi, and Ratnasingham Shivaji, Diffusive logistic equation with constant yield harvesting. I. Steady states, Trans. Amer. Math. Soc. 354 (2002), no. 9, 3601 – 3619. · Zbl 1109.35049
[37] Tiancheng Ouyang, On the positive solutions of semilinear equations \Delta \?+\?\?-\?\?^\?=0 on the compact manifolds, Trans. Amer. Math. Soc. 331 (1992), no. 2, 503 – 527. · Zbl 0759.35021
[38] Tiancheng Ouyang and Junping Shi, Exact multiplicity of positive solutions for a class of semilinear problems, J. Differential Equations 146 (1998), no. 1, 121 – 156. · Zbl 0918.35049 · doi:10.1006/jdeq.1998.3414 · doi.org
[39] Tiancheng Ouyang and Junping Shi, Exact multiplicity of positive solutions for a class of semilinear problem. II, J. Differential Equations 158 (1999), no. 1, 94 – 151. · Zbl 0947.35067 · doi:10.1016/S0022-0396(99)80020-5 · doi.org
[40] Owen, M.R.; Lewis, M.A., How can predation slow, stall or reverse a prey invasion? Bull. Math. Biol. 63, (2001), 655-684. · Zbl 1323.92181
[41] Segel, L.A.; Jackson, J.L., Dissipative structure: An explaination and an ecological example. J. Theor. Biol., 37, (1975), 545-559.
[42] Lee A. Segel and Simon A. Levin, Application of nonlinear stability theory to the study of the effects of diffusion on predator-prey interactions, Topics in statistical mechanics and biophysics: a memorial to Julius L. Jackson, Amer. Inst. Phys., New York, 1976, pp. 123 – 152. AIP Conf. Proc., No. 27.
[43] Junping Shi, Persistence and bifurcation of degenerate solutions, J. Funct. Anal. 169 (1999), no. 2, 494 – 531. · Zbl 0949.47050 · doi:10.1006/jfan.1999.3483 · doi.org
[44] Junping Shi, A radially symmetric anti-maximum principle and applications to fishery management models, Electron. J. Differential Equations (2004), No. 27, 13. · Zbl 1058.34011
[45] Junping Shi and Ratnasingham Shivaji, Global bifurcations of concave semipositone problems, Evolution equations, Lecture Notes in Pure and Appl. Math., vol. 234, Dekker, New York, 2003, pp. 385 – 398. · Zbl 1290.35108
[46] Junping Shi and Ratnasingham Shivaji, Persistence in reaction diffusion models with weak Allee effect, J. Math. Biol. 52 (2006), no. 6, 807 – 829. · Zbl 1110.92055 · doi:10.1007/s00285-006-0373-7 · doi.org
[47] Junping Shi and Miaoxin Yao, On a singular nonlinear semilinear elliptic problem, Proc. Roy. Soc. Edinburgh Sect. A 128 (1998), no. 6, 1389 – 1401. · Zbl 0919.35044 · doi:10.1017/S0308210500027384 · doi.org
[48] Leon Simon, Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems, Ann. of Math. (2) 118 (1983), no. 3, 525 – 571. · Zbl 0549.35071 · doi:10.2307/2006981 · doi.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.