×

zbMATH — the first resource for mathematics

Positive pseudo almost periodic solutions for some nonlinear infinite delay integral equations. (English) Zbl 1189.45014
The paper deals with the study of nonlinear infinite delay integral equation of the form
\[ x(t)= \int^t_{-\infty} a(t,t-s) f(s,x(s))\,ds,\tag{1} \]
where \(f: \mathbb{R}\times\mathbb{R}_+\to \mathbb{R}\) is continuous and \(a: \mathbb{R}\times \mathbb{R}_+\to \mathbb{R}_+\) and the function \(s\mapsto a(t,s)\) is integrable over \(\mathbb{R}_+\) for any fixed \(t\). Under some additional assumptions a few sufficient conditions are established which guarantee the existence of almost periodic, asymptotically almost period and pseudo almost periodic solutions of (1). Some applications to other types of integral or differential equations of the obtained results are indicated.

MSC:
45M15 Periodic solutions of integral equations
45G10 Other nonlinear integral equations
34K14 Almost and pseudo-almost periodic solutions to functional-differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Yoshizawa, T., ()
[2] Cooke, K.; Huang, W., On the problem for linearization for state-dependent delay differential equations, Proc. amer. math. soc., 124, 1417-1426, (1996) · Zbl 0844.34075
[3] Burton, T.A.; Hatvani, L., On the existence of periodic solutions of some nonlinear functional-differential equations with unbounded delay, Nonlinear anal., 16, 389-396, (1991) · Zbl 0736.34059
[4] Gao, G., Periodic solutions of neutral functional-differential equations, Chinese ann. math. ser. A, 9, 263-269, (1988), (in Chinese) · Zbl 0707.34055
[5] Ait Dads, E.; Ezzinbi, K., Existence of positive pseudo-almost periodic solution for a class of functional equations arising in epidemic problems, Cybern. syst. anal., 30, 900-910, (1994) · Zbl 0834.45006
[6] Ait Dads, E.; Ezzinbi, K., Existence of positive pseudo-almost-periodic solution for some nonlinear infinite delay integral equations arising in epidemic problems, Nonlinear anal., 41, 1-13, (2000) · Zbl 0964.45003
[7] Xu, B.; Yuan, R., The existence of positive almost periodic type solutions for some neutral nonlinear integral equation, Nonlinear anal., 60, 669-684, (2005) · Zbl 1063.45004
[8] Xu, B.; Yuan, R., On the positive almost periodic type solutions for some nonlinear delay integral equations, J. math. anal. appl., 304, 249-268, (2005) · Zbl 1074.45007
[9] Ding, H.S.; Liang, J.; N’Guerekata, G.M.; Xiao, T.J., Mild pseudo-almost periodic solutions of nonautonomous semilinear evolution equations, Math. comput. modelling, 45, 579-584, (2007) · Zbl 1165.34387
[10] Ding, H.S.; Liang, J.; N’Guerekata, G.M.; Xiao, T.J., Pseudo-almost periodicity of some nonautonomous evolution equations with delay, Nonlinear anal., 67, 1412-1418, (2007) · Zbl 1122.34345
[11] Liang, J.; Maniar, L.; N’Guerekata, G.M.; Xiao, T.J., Existence and uniqueness of \(C^n\)-almost periodic solutions to some ordinary differential equations, Nonlinear anal., 66, 1899-1910, (2007) · Zbl 1117.34042
[12] Bochner, S., A new approach to almost periodicity, Proc. natl. acad. sci. USA, 48, 2039-2043, (1962) · Zbl 0112.31401
[13] Corduneanu, C., Almost periodic functions, (1968), Wiley New York, Reprinted, Chelsea, New York, 1989 · Zbl 0175.09101
[14] Fink, A.M., ()
[15] Yoshizawa, T., Stability theory and the existence of periodic solutions and almost periodic solutions, (1975), Springer New-york · Zbl 0304.34051
[16] Zhang, C., Almost periodic type functions and ergodicity, (2003), Science Press Beijing, (Kluwer Academic Publishers, Dordrecht) · Zbl 1068.34001
[17] Thompson, A.C., On certain contraction mappings in a partially ordered vector space, Proc. amer. math. soc., 14, 438-443, (1963) · Zbl 0147.34903
[18] Deimling, K., Nonlinear functional analysis, (1985), Springer-Verlag Berlin · Zbl 0559.47040
[19] Li, H.; Huang, F.; Li, J., Composition of pseudo almost-periodic functions and semilinear differential equations, J. math. anal. appl., 255, 436-446, (2001) · Zbl 1047.47030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.