×

The homotopy perturbation method for discontinued problems arising in nanotechnology. (English) Zbl 1189.65186

Summary: Continuum hypothesis on nanoscales is invalid, and a differential-difference model is considered as an alternative approach to describing discontinued problems. This paper applies the homotopy perturbation method to a nonlinear differential-difference equation arising in nanotechnology. Comparison of the approximate solution with the exact one reveals that the method is very effective.

MSC:

65L99 Numerical methods for ordinary differential equations
82D80 Statistical mechanics of nanostructures and nanoparticles
35Q74 PDEs in connection with mechanics of deformable solids
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] El Naschie, M.S., Deterministic quantum mechanics versus classical mechanical indeterminism, Int. J. nonlinear sci., 8, 1, 5-10, (2007)
[2] El Naschie, M.S., A review of applications and results of \(E\)-infinity theory, Int. J. nonlinear sci., 8, 1, 11-20, (2007)
[3] M.S. El Naschie, Probability set particles, Int. J. Nonlinear Sci. 8 (1) 117-119
[4] El Naschie, M.S., Nanotechnology for the developing world, Chaos solitons fractals, 30, 769-773, (2006)
[5] Liu, Y.; He, J.H., Bubble electrospinning for mass production of nanofibers, Int. J. nonlinear sci., 8, 393-396, (2007)
[6] He, J.H.; Wan, Y.Q.; Xu, L., Nano-effects, quantum-like properties in electrospun nanofibers, Chaos solitons fractals, 33, 26-37, (2007)
[7] He, J.H.; Liu, Y.Y.; Xu, L., Micro sphere with nanoporosity by electrospinning, Chaos solitons fractals, 32, 1096-1100, (2007)
[8] He, J.H.; Zhu, S.D., Differential-difference model for nanotechnology, J. phys. conf. ser., 96, 012189, (2008)
[9] Suris, Y.B., Miura transformation for Toda-type integrable system with applications to the problem of integrable discretizations, fachbereich Mathematik, (1998), Technische University Press Berlin
[10] He, J.H., A coupling method of a homotopy technique and a perturbation technique for non-linear problems, Internat. J. non-linear mech., 35, 37-43, (2000) · Zbl 1068.74618
[11] He, J.H, Some asymptotic methods for strongly nonlinear equations, Internat. J. mod. phys. B, 20, 1141-1199, (2006) · Zbl 1102.34039
[12] He, J.H., New interpretation of homotopy perturbation method, Internat. J. mod. phys. B, 20, 2561-2568, (2006)
[13] He, J.H., Homotopy perturbation method for bifurcation of nonlinear problems, Int. J. nonlinear sci., 6, 207-208, (2005) · Zbl 1401.65085
[14] He, J.H., Limit cycle and bifurcation of nonlinear problems, Chaos solitons fractals, 26, 827-833, (2005) · Zbl 1093.34520
[15] Zhu, S.D., Exp-function method for the hybrid-lattice system, Int. J. nonlinear sci., 8, 3, 461-464, (2007)
[16] Zhu, S.D., Exp-function method for the discrete mkdv lattice, Int. J. nonlinear sci., 8, 3, 465-469, (2007)
[17] Zhu, S.D., Discrete \((2 + 1)\)-dimensional Toda lattice equation via exp-function method, Phys. lett. A, 372, 654-657, (2008) · Zbl 1217.37064
[18] Mokhtari, R., Variational iteration method for solving nonlinear differential-difference equations, Int. J. nonlinear sci., 9, 1, 19-24, (2008) · Zbl 1401.65152
[19] Gorji, M.; Ganji, D.D.; Soleimani, S., New application of he’s homotopy perturbation method, Int. J. nonlinear sci., 8, 319-328, (2007)
[20] Belendez, A.; Hernandez, A.; Belendez, T., An improved ‘heuristic’ approximation for the period of a nonlinear pendulum: linear analysis of a classical nonlinear problem, Int. J. nonlinear sci., 8, 329-334, (2007)
[21] Yusufoglu, E., Homotopy perturbation method for solving a nonlinear system of second order boundary value problems, Int. J. nonlinear sci., 8, 3, 353-358, (2007)
[22] Biazar, J.; Eslami, M.; Ghazvini, H., Homotopy perturbation method for systems of partial differential equations, Int. J. nonlinear sci., 8, 3, 413-418, (2007)
[23] Sadighi, A.; Ganji, D.D., Solution of the generalized nonlinear Boussinesq equation using homotopy perturbation and variational iteration methods, Int. J. nonlinear sci., 8, 3, 435-443, (2007) · Zbl 1120.65108
[24] Ghori, Q.R.; Ahmed, M.; Siddiqui, A.M., Application of homotopy perturbation method to squeezing flow of a Newtonian fluid, Int. J. nonlinear sci., 8, 2, 179-184, (2007)
[25] Rana, M.A.; Siddiqui, A.M.; Ghori, Q.k., Application of he’s homotopy perturbation method to sumudu transform, Int. J. nonlinear sci., 8, 2, 185-190, (2007)
[26] Tari, H.; Ganji, D.D.; Rostamian, M., Approximate solutions of K (2, 2), KdV and modified KdV equations by variational iteration method, homotopy perturbation method and homotopy analysis method, Int. J. nonlinear sci., 8, 2, 203-210, (2007)
[27] Ghorbani, A.; Saberi-Nadjafi, J., He’s homotopy perturbation method for calculating Adomian polynomials, Int. J. nonlinear sci., 8, 2, 229-232, (2007) · Zbl 1401.65056
[28] Ozis, T.; Yildirim, A., Traveling wave solution of Korteweg-de Vries equation using he’s homotopy perturbation method, Int. J. nonlinear sci., 8, 2, 239-242, (2007)
[29] Ozis, T.; Yildirim, A., A comparative study of he’s homotopy perturbation method for determining frequency-amplitude relation of a nonlinear oscillator with discontinuities, Int. J. nonlinear sci., 8, 2, 243-248, (2007)
[30] Belendez, A.; Hernandez, A.; Belendez, T., Application of he’s homotopy perturbation method to the Duffing-harmonic oscillator, Int. J. nonlinear sci., 8, 1, 79-88, (2007) · Zbl 1119.70017
[31] Ariel, P.D.; Hayat, T.; Asghar, S., Homotopy perturbation method and axisymmetric flow over a stretching sheet, Int. J. nonlinear sci., 7, 4, 399-406, (2006)
[32] Ganji, D.D.; Sadighi, A., Application of he’s homotopy-perturbation method to nonlinear coupled systems of reaction-diffusion equations, Int. J. nonlinear sci., 7, 4, 411-418, (2006)
[33] Zhang, J., Limit cycle for the Brusselator by he’s variational method, Math. probl. eng., (2007), Art. No. 85145 · Zbl 1144.92044
[34] Mohyud-Din, S.T.; Noor, M.A., Homotopy perturbation method for solving four-order boundary value problems, Math. probl. eng., (2007), Art. No. 98602 · Zbl 1144.65311
[35] Zhang, L.N.; He, J.H., Homotopy perturbation method for the solution of electrostatic potential differential equation, Math. probl. eng., (2006), Art. No. 83878
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.