×

The convergence of He’s variational iteration method for solving integral equations. (English) Zbl 1189.65312

Summary: Several integral equations are solved by He’s variational iteration method in general case, then we consider the convergence of He’s variational iteration method for solving integral equations.

MSC:

65R20 Numerical methods for integral equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Wazwaz, A.M., Two methods for solving integral equation, Appl. math. comput., 77, 79-89, (1996) · Zbl 0846.65077
[2] Wazwaz, A.M., A reliable treatment for mixed volterra – fredholm integral equations, Appl. math. comput., 127, 405-414, (2002) · Zbl 1023.65142
[3] He, J.H., Variational iteration method—a kind of nonlinear analytical technique: some examples, Int. J. nonlinear mech., 34, 699-708, (1999) · Zbl 1342.34005
[4] He, J.H., A review on some new recently developed nonlinear analytical techniques, Int. J. nonlinear sci. numer. simul., 1, 51-70, (2000) · Zbl 0966.65056
[5] J.H. He, Non-perturbative methods for strongly nonlinear problems, Dissertation, de-Verlag im Internet GmbH, Berlin, 2006
[6] He, J.H., Variational iteration method—some recent results and new interpretations, J. comput. appl. math., 207, 3-17, (2007) · Zbl 1119.65049
[7] He, J.H., Variational iteration method for autonomous ordinary differential systems, Appl. math. comput., 114, 115-123, (2000) · Zbl 1027.34009
[8] He, J.H.; Wu, X.H., Construction of solitary solutions and compacton-like solution by variational iteration method, Chaos solitons fractals, 29, 108-113, (2006) · Zbl 1147.35338
[9] Bildik, N.; Konuralp, A., The use of variational iteration method, differential transform methods and Adomian decomposition method for solving different type of nonlinear partial differential equation, Int. J. nonlinear sci. numer. simul., 7, 65-70, (2006) · Zbl 1401.35010
[10] Dehghan, M.; Tatari, M., Identifying and unknown function in parabolic equation with overspecified data via he’s VIM, Chaos solitons fractals, 36, 157-166, (2008) · Zbl 1152.35390
[11] Sweilam, N.H., Variational iteration method for solving cubic nonlinear schrodinger equation, J. comput. appl. math., 207, 155-163, (2007) · Zbl 1119.65098
[12] Tatari, M.; Dehghan, M., Solution of problems in calculus of variations via he’s variational iteration method, Physics letters A, 362, 401-406, (2007) · Zbl 1197.65112
[13] Dehghan, M.; Tatari, M., The use of he’s variational iteration method for solving the fokker – planck equation, Phys. scripta, 74, 310-316, (2006) · Zbl 1108.82033
[14] Dehghan, M.; Shakeri, F., Approximate solution of a differential equation arising in astrophysics using the variational iteration method, New astron., 13, 53-59, (2008)
[15] Shakeri, F.; Dehghan, M., Numerical solution of the klein – gordon equation via he’s variational iteration method, Nonlinear dynamics, 51, 89-97, (2008) · Zbl 1179.81064
[16] Shakeri, F.; Dehghan, M., Solution of a model describing biological species living together using the variational iteration method, Math. comput. modelling, 48, 2175-2188, (2008) · Zbl 1165.65384
[17] Dehghan, M.; Tatari, M., Identifying an unknown function in a parabolic equation with overspecified data via he’s variational iteration method, Chaos solitons fractals, 36, 157-166, (2008) · Zbl 1152.35390
[18] Dehghan, M.; Shakeri, F., Application of he’s variational iteration method for solving the Cauchy reaction – diffusion problem, J. comput. appl. math., 214, 435-446, (2008) · Zbl 1135.65381
[19] Dehghan, M.; Shakeri, F., Numerical solution of a biological population model using he’s variational iteration method, Comput. math. appl., 54, 1197-1209, (2007) · Zbl 1137.92033
[20] He, J.H.; Wu, X.H., Variational iteration method: new development and applications, Comput. math appl., 54, 881-894, (2007) · Zbl 1141.65372
[21] He, J.H., Variational iteration method — some recent results and new interpretations, Comput. appl. math., 207, 3-17, (2007) · Zbl 1119.65049
[22] Ozer, H., Application of the variational iteration method to the boundary value problems with jump discontinuities arising in solid mechanics, Int. J. nonlinear sci. numer. simul., 8, 513-518, (2007)
[23] Biazar, J.; Ghazvini, H., He’s variational iteration method for solving hyperbolic differential equations, Int. J. nonlinear sci. numer. simul., 8, 311-314, (2007) · Zbl 1193.65144
[24] Odibat, Z.M.; Momani, S., Application of variational iteration method to nonlinear differential equations of fractional order, Int. J. nonlinear sci. numer. simul., 7, 27-34, (2006) · Zbl 1401.65087
[25] Fröberg, C.E., Introduction to numerical analysis, (1968), Addison-Wesley Pub Company
[26] Wazwaz, A.M., A first course in integral equation, (1997), World Scientific Singapore
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.