×

zbMATH — the first resource for mathematics

Newtonian law with memory. (English) Zbl 1189.70002
Summary: We analyzed the Newtonian equation with memory. One physical model possessing memory effect is analyzed in detail. The fractional generalization of this model is investigated and the exact solutions within Caputo and Riemann-Liouville fractional derivatives are reported.

MSC:
70A05 Axiomatics, foundations
26A33 Fractional derivatives and integrals
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974) · Zbl 0292.26011
[2] Miller, K.S., Ross, B.: An Introduction to the Fractional Integrals and Derivatives–Theory and Application. Wiley, New York (1993) · Zbl 0789.26002
[3] Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives Theory and Applications. Gordon and Breach, New York (1993) · Zbl 0818.26003
[4] Hilfer, R.: Application of Fractional Calculus in Physics. World Scientific, Singapore (2000) · Zbl 0998.26002
[5] Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999) · Zbl 0924.34008
[6] Zaslavsky, G.M.: Hamiltonian Chaos and Fractional Dynamics. Oxford University Press, Oxford (2005) · Zbl 1083.37002
[7] Kilbas, A.A., Srivastava, H.H., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, The Netherlands (2006) · Zbl 1092.45003
[8] Magin, R.L.: Fractional Calculus in Bioengineering. Begell House, Connecticut (2006)
[9] Gorenflo, R., Mainardi, F.: Fractional Calculus: Integral and Differential Equations of Fractional Orders, Fractals and Fractional Calculus in Continuum Mechanics. Springer, New York (1997) · Zbl 0917.73004
[10] West, B.J., Bologna, M., Grigolini, P.: Physics of Fractal Operators. Springer, New York (2003)
[11] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371, 461–580 (2002) · Zbl 0999.82053
[12] Jesus, I.S., Machado, J.A.T.: Fractional control of heat diffusion systems. Nonlinear Dyn. 54(3), 263 (2008) · Zbl 1210.80008
[13] Chen, Y.Q., Vinagre, B.M., Podlubny, I.: Continued fraction expansion approaches to discretizing fractional order derivatives–an expository review. Nonlinear Dyn. 38(1–4), 155 (2004) · Zbl 1134.93300
[14] Scalas, E., Gorenflo, R., Mainardi, F.: Uncoupled continuous-time random walks: Solution and limiting behavior of the master equation. Phys. Rev. E 69, 011107-1 (2004)
[15] Yong, J., Zhang, X.: Heat equations with memory. Nonlinear Analysis 63, e99–e108 (2005) · Zbl 1153.35309
[16] Le Mehaute, A., Nigmatullin, R.R., Nivanen, L.: Fleches du Temps et Geometrie Fractale. Editions Hermes, Paris (1998)
[17] Nigmatullin, R.R., Le Mehaute, A.: Is there geometrical/physical meaning of the fractional integral with complex exponent? J. Non-Cryst. Sol. 351, 2888 (2005)
[18] Nigmatullin, R.R.: Fractional’ kinetic equations and ’universal’ decoupling of a memory function in mesoscale region. Physica A 363, 282 (2006)
[19] Nigmatullin, R.R., Arbuzova, A.A., Salehlib, F., Gizb, A., Bayrakb, I., Catalgil-Giz, H.: The first experimental confirmation of the fractional kinetics containing the complex-power-law exponents: Dielectric measurements of polymerization reactions. Physica B: Phys. Cond. Matt. 388, 418 (2007)
[20] Heymans, N., Podlubny, I.: Physical interpretation of initial conditions for fractional differential equations with Riemann–Liouville fractional derivatives. Rheol. Acta 45, 765 (2006)
[21] Riewe, F.: Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 53, 1890–1899 (1996)
[22] Riewe, F.: Mechanics with fractional derivatives. Phys. Rev. E 55, 3581–3592 (1997)
[23] Laskin, N.: Fractional quantum mechanics. Phys. Rev. E 62, 3135–3145 (2000) · Zbl 0948.81595
[24] Klimek, K.: Fractional sequential mechanics–models with symmetric fractional derivative. Czechoslov. J. Phys. E 51, 1348–1354 (2001) · Zbl 1064.70507
[25] Klimek, K.: Lagrangean and Hamiltonian fractional sequential mechanics. Czechoslov. J. Phys. E 52, 1247–1253 (2002) · Zbl 1064.70013
[26] Agrawal, O.P.: Formulation of Euler–Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272, 368–379 (2002) · Zbl 1070.49013
[27] Tarasov, V.E., Zaslavsky, G.M.: Fractional Ginzburg–Landau equation for fractal media. Physica A 354, 249–261 (2005)
[28] Muslih, S., Baleanu, D.: Hamiltonian formulation of systems with linear velocities within Riemann–Liouville fractional derivatives. J. Math. Anal. Appl. 304, 599–606 (2005) · Zbl 1149.70320
[29] Baleanu, D., Golmankhaneh, A.K., Golmankhaneh Alireza, K.: The dual action of fractional multi-time Hamilton equations. Int. J. Theor. Phys. (in press). doi: 10.1007/s10773-009-0042-x · Zbl 1405.34005
[30] Baleanu, D., Agrawal, O.P.: Fractional Hamilton formalism within Caputo’s derivative Czechoslov. J. Phys. 56, 1087–1092 (2006) · Zbl 1111.37304
[31] Baleanu, D., Muslih, S., Tas, K.: Fractional Hamiltonian analysis of higher order derivatives systems. J. Math. Phys. 47, 103503 (2006) · Zbl 1112.81074
[32] Tarasov, V.E.: Fractional statistical mechanics. Chaos 16, 033108–033115 (2006) · Zbl 1152.82325
[33] Tarasov, V.E.: Fractional Variation for Dynamical systems: Hamilton and Lagrange Approaches. J. Phys. A: Math. Gen. 39(26), 8409–8425 (2006) · Zbl 1122.70013
[34] Rabei, E.M., Nawafleh, K.I., Hiijawi, R.S., Muslih, S.I., Baleanu, D.: The Hamilton formalism with fractional derivatives. J. Math. Anal. Appl. 327, 891–897 (2007) · Zbl 1104.70012
[35] Rabei, E.M., Almayteh, I., Muslih, S.I., Baleanu, D.: Hamilton–Jaccobi formulation of systems with Caputo’s fractional derivative. Phys. Scripta 77, 015101 (2007) · Zbl 1145.70011
[36] Gastao, S.F.F., Delfim, F.M.T.: A formulation of Noether’s theorem for fractional problems of calculus of variations. J. Math. Anal. Appl. 334, 834–846 (2007) · Zbl 1119.49035
[37] Baleanu, D., Golmankhaneh, Alireza K., Golmankhaneh, Ali K.: Fractional Nambu mechanics. Int. J. Theor. Phys. 48, 1044 (2009) · Zbl 1170.70009
[38] Golmankhaneh, Alireza K.: Fractional Poisson bracket. Turk. J. Phys. 32, 241 (2008)
[39] Baleanu, D., Agrawal, O.P.: Fractional Hamilton formalism within Caputo’s derivative Czechoslov. J. Phys. 56, 1087–1092 (2006) · Zbl 1111.37304
[40] Baleanu, D., Trujillo, J.J.: On exact solutions of a class of fractional Euler–Lagrange equations. Nonlinear Dyn. 52, 331 (2008) · Zbl 1170.70328
[41] Agrawal, O.P., Baleanu, D.: A Hamiltonian formulation and a direct numerical scheme for fractional optimal control problems. J. Vib. Control 13, 1269 (2007) · Zbl 1182.70047
[42] Agrawal, O.P.: A general finite element formulation for fractional variational problems. J. Math. Anal. Appl. 337, 1 (2008) · Zbl 1123.65059
[43] Agrawal, O.P.: Generalized Euler–Lagrange Equations and Transversality Conditions for FVPs in terms of the Caputo Derivative. J. Vib. Control 13, 1217 (2007) · Zbl 1158.49006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.