×

Secondary instabilities in the flow around two circular cylinders in tandem. (English) Zbl 1189.76218

Summary: Direct stability analysis and numerical simulations have been employed to identify and characterize secondary instabilities in the wake of the flow around two identical circular cylinders in tandem arrangements. The centre-to-centre separation was varied from 1.2 to 10 cylinder diameters. Four distinct regimes were identified and salient cases chosen to represent the different scenarios observed, and for each configuration detailed results are presented and compared to those obtained for a flow around an isolated cylinder. It was observed that the early stages of the wake transition changes significantly if the separation is smaller than the drag inversion spacing. The onset of the three-dimensional instabilities were calculated and the unstable modes are fully described. In addition, we assessed the nonlinear character of the bifurcations and physical mechanisms are proposed to explain the instabilities. The dependence of the critical Reynolds number on the centre-to-centre separation is also discussed.

MSC:

76E09 Stability and instability of nonparallel flows in hydrodynamic stability
76D25 Wakes and jets
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.1063/1.1713250
[2] DOI: 10.1006/jfls.2000.0369
[3] DOI: 10.1098/rsta.1923.0008
[4] DOI: 10.1017/S0022112003006670 · Zbl 1068.76037
[5] DOI: 10.1063/1.870069 · Zbl 1147.76327
[6] DOI: 10.1063/1.2227045
[7] DOI: 10.1016/0889-9746(92)90001-J
[8] DOI: 10.1016/j.euromechflu.2003.09.010 · Zbl 1045.76501
[9] DOI: 10.1017/S0022112004008614 · Zbl 1073.76041
[10] DOI: 10.1063/1.867002 · Zbl 0651.76018
[11] DOI: 10.1017/S0022112003005512 · Zbl 1063.76539
[12] DOI: 10.1103/PhysRevLett.57.2160
[13] DOI: 10.1017/S0022112005005082 · Zbl 1097.76034
[14] DOI: 10.1017/S0022112096002777 · Zbl 0882.76028
[15] DOI: 10.1017/S0022112087002222 · Zbl 0641.76046
[16] DOI: 10.1017/S002211200200232X · Zbl 1026.76019
[17] DOI: 10.1103/PhysRevLett.57.2157
[18] DOI: 10.1017/S0022112006000139 · Zbl 1156.76370
[19] DOI: 10.1007/b97538
[20] DOI: 10.1063/1.2104689 · Zbl 1188.76103
[21] DOI: 10.1002/(SICI)1097-0363(19971215)25:11<1315::AID-FLD617>3.0.CO;2-P · Zbl 0909.76050
[22] DOI: 10.1006/jfls.2000.0343
[23] DOI: 10.1016/S0997-7546(98)80012-5 · Zbl 0948.76505
[24] DOI: 10.1017/S0022112097008331 · Zbl 0923.76012
[25] DOI: 10.1017/S0022112088000916
[26] DOI: 10.1063/1.864755 · Zbl 0585.76045
[27] DOI: 10.1093/acprof:oso/9780198528692.001.0001 · Zbl 1116.76002
[28] DOI: 10.1016/0021-9991(91)90007-8 · Zbl 0738.76050
[29] DOI: 10.1016/0045-7825(90)90041-J · Zbl 0722.76053
[30] DOI: 10.1017/S0022112095000462 · Zbl 0847.76007
[31] Igarashi, Bull. JSME 24 pp 323– (1981)
[32] DOI: 10.1017/S0022112097007465 · Zbl 0903.76070
[33] DOI: 10.1017/S0022112066001721
[34] DOI: 10.1016/S0889-9746(87)90355-0
[35] DOI: 10.1016/j.fluiddyn.2006.02.003 · Zbl 1179.76022
[36] Zdravkovich, ASME J. Fluids Engng 99 pp 618– (1977)
[37] DOI: 10.1017/S0022112007009639 · Zbl 1133.76018
[38] Zdravkovich, Aeronaut. J. 76 pp 108– (1972)
[39] DOI: 10.1016/j.jfluidstructs.2006.04.016
[40] DOI: 10.1017/S0022112096008750 · Zbl 0899.76129
[41] DOI: 10.1063/1.868986
[42] DOI: 10.1063/1.866925
[43] Tuckerman, Numerical methods for bifurcation problems and large-scale dynamical systems pp 543– (2000)
[44] DOI: 10.1017/S0022112004002095 · Zbl 1065.76097
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.