×

zbMATH — the first resource for mathematics

A method of duality for a mixed vector equilibrium problem. (English) Zbl 1189.90189
The authors develop the conjugate duality theory for mixed vector equilibrium problems in a Hausdorff vector space setting. These problems involve two vector functions. Being based on the previous results from scalar equilibrium problems, vector optimization, and vector variational inequalities, the authors define conjugate dual problems and present a sufficient condition which provides an analogue of the duality relationship between solutions.

MSC:
90C46 Optimality conditions and duality in mathematical programming
90C29 Multi-objective and goal programming
90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Belenkii, V.Z., Volkonskii, V.A. (eds.) Iterative methods in game theory and programming. Nauka, Moscow (1974) (in Russian)
[2] Konno I.V., Schaible S.: Duality for equilibrium problems under generalized monotonicity. J. Optim. Theory Appl. 104, 395–408 (2000) · Zbl 1016.90066 · doi:10.1023/A:1004665830923
[3] Ansari Q.H., Siddiqi A.H.: Existence and duality of generalized vector equilibrium problems. J. Math. Anal. Appl. 256, 115–126 (2001) · Zbl 1018.90041 · doi:10.1006/jmaa.2000.7397
[4] Konnov I.V., Yao J.C.: Existence of solutions for generalized vector equilibrium problems. J. Math. Anal. Appl. 233, 328–335 (1999) · Zbl 0933.49004 · doi:10.1006/jmaa.1999.6312
[5] Bianchi M., Hadjisavvas N., Schaible S.: Vector equilibrium problems with generalized monotone bifunctions. J. Optim. Theory Appl. 92, 527–542 (1997) · Zbl 0878.49007 · doi:10.1023/A:1022603406244
[6] Bianchi M., Schaible S.: Generalized monotone bifunctions and equilibrium problems. J. Optim. Theory Appl. 90, 31–43 (1996) · Zbl 0903.49006 · doi:10.1007/BF02192244
[7] Bianchi M., Pini R.: A note on equilibrium problems with properly quasimonotone functions. J. Global Optim. 20, 67–76 (2001) · Zbl 0985.90090 · doi:10.1023/A:1011234525151
[8] Oettli W.: A remark on vector-valued equilibria and generalized monotonicity. Acta Math. Vietnam. 22, 215–221 (1997) · Zbl 0914.90235
[9] Chadli O., Chbani Z., Riahi H.: Equilibrium problems with generalized monotone bifunctions and applications to variational inequalities. J. Optim. Theory Appl. 105, 299–323 (2000) · Zbl 0966.91049 · doi:10.1023/A:1004657817758
[10] Martinez-Legaz J.E., Sosa W.: Duality for equilibrium problems. J. Global Optim. 35, 311–319 (2006) · Zbl 1106.90074 · doi:10.1007/s10898-005-3840-6
[11] Jacinto F.M.O., Scheimberg S.: Duality for generalized equilibrium problem. Optimization 57, 795–805 (2008) · Zbl 1152.90648 · doi:10.1080/02331930701761458
[12] Bigi G., Castellani M., Kassay G.: A dual view of equilibrium problems. J. Math. Anal. Appl. 342, 17–26 (2008) · Zbl 1155.90021
[13] Sach P.H., Kim D.S., Tuan L.A., Lee G.M.: Duality results for generalized vector variational inequalities with set-valued maps. J. Optim. Theory Appl. 136, 105–123 (2008) · Zbl 1194.90108 · doi:10.1007/s10957-007-9342-6
[14] Rockafelar R.T.: Dualization of subgradient condition for optimality. Nonlinear Anal. Theory Meth. Appl. 20, 627–646 (1993) · Zbl 0786.49012 · doi:10.1016/0362-546X(93)90024-M
[15] Kum S., Kim G.S., Lee G.M.: Duality for \(\epsilon\)-variational inequality. J. Optim. Theory Appl. 139, 649–655 (2008) · Zbl 1163.58302 · doi:10.1007/s10957-008-9403-5
[16] Song W.: A generalization of Fenchel duality in set-valued vecto optimization. Math. Meth. Oper. Res. 48, 259–272 (1998) · Zbl 0927.90096 · doi:10.1007/s001860050027
[17] Sosa W., Raupp F.: On minimization over weakly efficient sets. Optimization 56, 207–219 (2007) · Zbl 1196.90111 · doi:10.1080/02331930600808533
[18] Tanino T.: Conjugate duality in vector optimization. J. Math. Anal. Appl. 167, 84–97 (1992) · Zbl 0765.90082 · doi:10.1016/0022-247X(92)90237-8
[19] Tanino T.: On supremum of a set in a multi-dimensional space. J. Math. Anal. Appl. 130, 386–397 (1988) · Zbl 0641.90076 · doi:10.1016/0022-247X(88)90314-9
[20] Li S.J., Yao S.F., Chen C.R.: Saddle points and gap functions for vector equilibrium problems via conjugate duality in vector optimization. J. Math. Anal. Appl. 343, 853–865 (2008) · Zbl 1160.90002 · doi:10.1016/j.jmaa.2008.02.009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.