Robust path tracking using flatness for fractional linear MIMO systems: a thermal application. (English) Zbl 1189.93049

Summary: This paper deals with robust path tracking using flatness principles extended to fractional linear MIMO systems. As soon as the path has been obtained by means of the fractional flatness, a robust path tracking based on CRONE control is presented. Flatness in path planning is used to determine the controls to apply without integrating any differential equations when the trajectory is fixed (in space and in time). Several developments have been made for fractional linear SISO systems using a transfer function approach. For fractional systems, especially in MIMO, developments are still to be made. Throughout this paper, flatness principles are applied using polynomial matrices for fractional linear MIMO systems. To illustrate the robustness performances, a third-generation multi-scalar CRONE controller is compared to a PID one.


93B50 Synthesis problems
26A33 Fractional derivatives and integrals
93B51 Design techniques (robust design, computer-aided design, etc.)


Full Text: DOI


[1] Battaglia, J.-L.; Le Lay, L.; Batsale, J.-C.; Oustaloup, A.; Cois, O., Heat flux estimation through inverted non integer identification models, Int. J. thermal science, 39, 3, 374-389, (2000)
[2] L. Dorcak Petras, I.B. Vinagre, V. Feliu, Fractional digital control of a heat solid: Experimental results, in: Proceedings of International Carpathian Control Conference ICCC’02, page 365-370, 2002
[3] Darling, R.; Newman, J., On the short behavior of porous intercalation electrodes, J. electrochem. soc., 144, 9, 3057-3063, (1997)
[4] Moreau, X.; Ramus-Serment, C.; Oustaloup, A., Fractional differentiation in passive vibration control, Nonlinear dynam., 29, 1-4, 343-362, (2002), Special Issue on “Fractional Order Calculus and its Applications” · Zbl 1019.74028
[5] Fliess, M.; Lévine, J.; Martin, PH.; Rouchon, P., Flatness and defect of nonlinear systems: introductory theory and examples, Internat. J. control, 61, 1327-1361, (1995) · Zbl 0838.93022
[6] Fliess, M.; Lévine, J.; Martin, Ph.; Rouchon, P., A lie-Bäcklund approach to equivalence and flatness of nonlinear systems, IEEE trans. autom. control, 44, 922-937, (1999) · Zbl 0964.93028
[7] Levine, J.; Nguyen, D.V., Flat output characterization for linear systems using polynomial matrices, Syst. control lett., 48, 69-75, (2003) · Zbl 1106.93319
[8] L. Bitauld, M. Fliess, J. Lévine, A flatness based control synthesis of linear systems and application to windshield wipers, in: ECC’97, Brussels, 1997
[9] Victor, S.; Melchior, P.; Oustaloup, A., Flatness principle extension to linear fractional {\scmimo} systems: thermal application, ()
[10] S. Victor, P. Melchior, A. Oustaloup, Extension de la platitude aux systèmes fractionnaires {\scMIMO}: Application à un système thermique, in: CIFA’08, Bucarest, Roumania, September 2008
[11] Melchior, P.; Cugnet, M.; Sabatier, J.; Poty, A.; Oustaloup, A., Flatness control of a fractional thermal system, (), 493-509, (chapter VII) · Zbl 1126.93335
[12] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional integrals and derivatives: Theory and applications, Gordon and Breach Science, 1993 · Zbl 0818.26003
[13] Oustaloup, A., La dérivation non-entière, (1995), Hermès Paris · Zbl 0864.93004
[14] D. Matignon, Représentations en variables d’état de modèles de guides d’ondes avec dérivation fractionnaire, PhD thesis, Université de Paris-Sud, Orsay, 1994
[15] J.-C. Trigeassou, T. Poinot, J. Lin, A. Oustaloup, F. Levron, Modeling and identification of a non integer order system, in: ECC, Karlsruhe, Germany, 1999
[16] C. Lorenzo, T. Hartley, Initialization in fractional order systems, in: 6th European Control Conference, Porto, Portugal, September 2001
[17] Podlubny, I., Fractional differential equations, (1999), Academic Press San Diego · Zbl 0918.34010
[18] Miller, K.S.; Ross, B., An introduction to the fractional calculus and fractional differential equations, (1993), A Wiley-Interscience Publication · Zbl 0789.26002
[19] Aoun, M.; Malti, R.; Levron, F.; Oustaloup, A., Numerical simulations of fractional systems: an overview of existing methods and improvements, Nonlinear dynam., 38, 1-4, 117-131, (2004), Special issue: Fractional Derivatives and Their Applications · Zbl 1134.65300
[20] D. Matignon, Stability properties for generalized fractional differential systems, in: ESAIM proceedings - Systèmes Différentiels Fractionnaires - Modèles, Méthodes et Applications, 5, 1998 · Zbl 0920.34010
[21] Oldham, K.B.; Spanier, J., The fractionnal calculus, (1974), Academic Press New York and London · Zbl 0428.26004
[22] Battaglia, J.-L.; Cois, O.; Puigsegur, L.; Oustaloup, A., Solving an inverse heat conduction problem using a non-integer identified model, Int. J. heat mass transfer, 44, 14, 2671-2680, (2001) · Zbl 0981.80007
[23] Vinagre, B.M.; Petras, I.; Podlubny, I.; Chen, Y.Q., Using fractional order adjustment rules and fractional order reference models in model reference adaptive control, Nonlinear dynam., 29, 269-279, (2002) · Zbl 1031.93110
[24] Podlubny, I., Fractional-order systems and pid controllers, IEEE trans. automat. control, 44, 1, 208-214, (1999) · Zbl 1056.93542
[25] Machado, J.A.T., Analysis and design of fractional-order digital control systems, SAMS journal of systems analysis, modelling simul., 27, 107-122, (1997) · Zbl 0875.93154
[26] R.S. Barbosa, J.A.T. Machado, I.S. Jesus, Fractional pid control of an experimental servo system, in: 3rd IFAC Fractional Differentiation and Its Applications (FDA’08), Ankara, Turkey, November 5-7 2008
[27] Oustaloup, A., La commande CRONE: du scalaire au multivariable, (1999), Hermès Paris · Zbl 0936.93004
[28] D. Nelson-Gruel, V. Pommier, P. Lanusse, A. Oustaloup, Robust control system design for multivariable plants with lightly damped modes, in: 21st ASME IDETC/CIE 2007, Las Vegas, USA, September 2007
[29] Oustaloup, A., La commande CRONE, (1991), Hermès Paris · Zbl 0864.93003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.