×

zbMATH — the first resource for mathematics

Boundary-layer flow of a nanofluid past a stretching sheet. (English) Zbl 1190.80017
Summary: The problem of laminar fluid flow which results from the stretching of a flat surface in a nanofluid has been investigated numerically. This is the first paper on stretching sheet in nanofluids. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. A similarity solution is presented which depends on the Prandtl number \(Pr\), Lewis number \(Le\), Brownian motion number \(Nb\) and thermophoresis number \(Nt\). The variation of the reduced Nusselt and reduced Sherwood numbers with \(Nb\) and \(Nt\) for various values of \(Pr\) and \(Le\) is presented in tabular and graphical forms. It was found that the reduced Nusselt number is a decreasing function of each dimensionless number, while the reduced Sherwood number is an increasing function of higher \(Pr\) and a decreasing function of lower \(Pr\) number for each \(Le, Nb\) and \(Nt\) numbers.

MSC:
80A20 Heat and mass transfer, heat flow (MSC2010)
60J65 Brownian motion
76D10 Boundary-layer theory, separation and reattachment, higher-order effects
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Takhar, H. S.; Chamkha, A. J.; Nath, G.: Unsteady three-dimensional MHD-boundary-layer flow due to the impulsive motion of a stretching surface, Acta mech. 146, 59-71 (2001) · Zbl 0974.76097
[2] Vleggaar, J.: Laminar boundary layer behaviour on continuous accelerating surface, Chem. eng. Sci. 32, 1517-1525 (1977)
[3] Crane, L. J.: Flow past a stretching plate, J. appl. Math. phys. (ZAMP) 21, 645-647 (1970)
[4] Lakshmisha, K. N.; Venkateswaran, S.; Nath, G.: Three-dimensional unsteady flow with heat and mass transfer over a continuous stretching surface, ASME J. Heat transfer 110, 590-595 (1988)
[5] Wang, C. Y.: The three-dimensional flow due to a stretching flat surface, Phys. fluids 27, 1915-1917 (1984) · Zbl 0545.76033
[6] Andersson, H. I.; Dandapat, B. S.: Flow of a power-law fluid over a stretching sheet, Saacm 1, 339-347 (1991)
[7] Magyari, E.; Keller, B.: Exact solutions for self-similar boundary-layer flows induced by permeable stretching walls, Eur. J. Mech. B fluids 19, 109-122 (2000) · Zbl 0976.76021
[8] Sparrow, E. M.; Abraham, J. P.: Universal solutions for the streamwise variation of the temperature of a moving sheet in the presence of a moving fluid, Int. J. Heat mass transfer 48, 3047-3056 (2005) · Zbl 1189.76143
[9] Abraham, J. P.; Sparrow, E. M.: Friction drag resulting from the simultaneous imposed motions of a freestream and its bounding surface, Int. J. Heat fluid flow 26, 289-295 (2005)
[10] Kakaç, S.; Pramuanjaroenkij, A.: Review of convective heat transfer enhancement with nanofluids, Int. J. Heat mass transfer 52, 3187-3196 (2009) · Zbl 1167.80338
[11] S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, in: The Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, USA, ASME, FED 231/MD 66, 1995, pp. 99 – 105.
[12] Choi, S. U. S.; Zhang, Z. G.; Yu, W.; Lockwood, F. E.; Grulke, E. A.: Anomalously thermal conductivity enhancement in nanotube suspensions, Appl. phys. Lett. 79, 2252-2254 (2001)
[13] Khanafer, K.; Vafai, K.; Lightstone, M.: Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids, Int. J. Heat mass transfer 46, 3639-3653 (2003) · Zbl 1042.76586
[14] Kang, H. U.; Kim, S. H.; Oh, J. M.: Estimation of thermal conductivity of nanofluid using experimental effective particle volume, Exp. heat transfer 19, 181-191 (2006)
[15] Maiga, S. E. B.; Palm, S. J.; Nguyen, C. T.; Roy, G.; Galanis, N.: Heat transfer enhancement by using nanofluids in forced convection flow, Int. J. Heat fluid flow 26, 530-546 (2005)
[16] Tiwari, R. K.; Das, M. K.: Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids, Int. J. Heat mass transfer 50, 2002-2018 (2007) · Zbl 1124.80371
[17] Tzou, D. Y.: Thermal instability of nanofluids in natural convection, Int. J. Heat mass transfer 51, 2967-2979 (2008) · Zbl 1143.80330
[18] Abu-Nada, E.: Application of nanofluids for heat transfer enhancement of separated flows encountered in a backward facing step, Int. J. Heat fluid flow 29, 242-249 (2008)
[19] Oztop, H. F.; Abu-Nada, E.: Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids, Int. J. Heat fluid flow 29, 1326-1336 (2008)
[20] Buongiorno, J.: Convective transport in nanofluids, ASME J. Heat transfer 128, 240-250 (2006)
[21] A.V. Kuznetsov, D.A. Nield, Natural convective boundary-layer flow of a nanofluid past a vertical plate, Int. J. Thermal Sci. doi:10.1016/j.ijthermalsci.2009.07.015. · Zbl 1177.80046
[22] Nield, D. A.; Kuznetsov, A. V.: The cheng-minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid, Int. J. Heat mass transfer 52, 5792-5795 (2009) · Zbl 1177.80046
[23] Cheng, P.; Minkowycz, W. J.: Free convection about a vertical flat plate embedded in a porous medium with application to heat transfer from a dike, J. geophys. Res. 82, 2040-2044 (1977)
[24] Wang, C. Y.: Free convection on a vertical stretching surface, J. appl. Math. mech. (ZAMM) 69, 418-420 (1989) · Zbl 0698.76092
[25] Gorla, R. S. R.; Sidawi, I.: Free convection on a vertical stretching surface with suction and blowing, Appl. sci. Res. 52, 247-257 (1994) · Zbl 0800.76421
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.