×

Bulk viscous Bianchi type-III cosmological model with time-dependent \(G\) and \(\Lambda \). (English) Zbl 1190.83131

Summary: This paper deals with Bianchi type-III anisotropic cosmological model of the universe filled with a bulk viscous fluid with time varying gravitational and cosmological constants. It is shown that the field equations are solvable for any arbitrary cosmic scale function. Exact solutions of Einstein’s field equations are obtained which represent an expanding, shearing, non-rotating and decelerating universe. The physical behaviour of the model has also been discussed.

MSC:

83F05 Relativistic cosmology
83C15 Exact solutions to problems in general relativity and gravitational theory
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Weinberg, S.: Rev. Mod. Phys. 61, 1 (1989) · Zbl 1129.83361
[2] Ng, Y.J.: Int. J. Mod. Phys. D 1, 145 (1992) · Zbl 0936.83510
[3] Krause, L.M., Turner, M.S.: Gen. Relativ. Gravit. 27, 1137 (1995) · Zbl 0836.53050
[4] Linde, A.D.: ZETP Lett. 19, 1264 (1974)
[5] Ratra, B., Peebles, P.J.E.: Phys. Rev. D 37, 3406 (1988)
[6] Dolgov, A.D.: In: Gibbons, G.W., Hawking, S.W., Siklos, S.T.C. (eds.) The Very Early Universe. Cambridge University Press, Cambridge (1983)
[7] Dolgov, A.D., Sazhin, M.V., Zeldovich, Ya.B.: Basic of Modern Cosmology. Editions Frontiers (1990)
[8] Dolgov, A.D.: Phys. Rev. D 55, 5881 (1997)
[9] Sahni, V., Starobinsky, A.: Int. J. Mod. Phys. D 9, 373 (2000)
[10] Perlmutter, S., et al.: Astrophys. J. 517, 565 (1999) · Zbl 1368.85002
[11] Riess, A.G., et al.: Astrophys. J. 560, 49 (2001)
[12] Narciso, B., et al.: Astrophys. J. 577, L1 (2002)
[13] Tonry, J.L.: Astrophys. J. 594, 1 (2003)
[14] Riess, A.G., et al.: Astrophys. J. 607, 665 (2004) · Zbl 1369.85001
[15] Bennett, C.L., et al.: Astrophys. J. Suppl. 148, 1 (2003)
[16] Ellis, G.F.R., Uzan, J.P.: Am. J. Phys. 73, 240 (2003)
[17] Sistero, F.: Gen. Relativ. Gravit. 23, 11 (1991)
[18] Kalligas, D., Wesson, P., Everitt, C.W.F.: Gen. Relativ. Gravit. 24, 351 (1992)
[19] Arbab, A.I.: Gen. Relativ. Gravit. 29, 61 (1997) · Zbl 0873.53076
[20] Abdussattar, Vishwakarma, R.G.: Class. Quantum Gravity 14, 945 (1997) · Zbl 0870.53073
[21] Barrow, J.D., Parsons, P.: Phys. Rev. D 55, 1906 (1997)
[22] Singh, G.P., Kotambkar, S.: Gravit. Cosmol. 9, 206 (2003)
[23] Vishwakarma, R.G.: Gen. Relativ. Gravit. 37, 1305 (2005) · Zbl 1072.83025
[24] Singh, N.I., Sorokhaibam, A.: Astrophys. Space Sci. 310, 131 (2007)
[25] Singh, J.P., Pradhan, A., Singh, A.K.: Astrophys. Space Sci. 314, 83 (2008)
[26] Singh, J.P., Tiwari, R.K.: Pramana J. Phys. 70, 565 (2008)
[27] Singh, J.P., Tiwari, S.K., Shukla, P.: Chin. Phys. Lett. 24, 3325 (2007)
[28] Chakraborty, S., Roy, A.: Astrophys. Space Sci. 313, 83 (2008)
[29] Singh, G.P., Kale, A.Y.: Int. J. Theor. Phys. 48, 1177 (2009) · Zbl 1171.83348
[30] Singh, C.P., Kumar, S., Pradhan, A.: Class. Quantum Gravity 24, 455 (2007) · Zbl 1133.83418
[31] Pradhan, A., Kumhar, S.S.: Int. J. Theor. Phys. 48, 1466 (2009) · Zbl 1171.83382
[32] Bali, R.: Chin. Phys. Lett. 26, 029802 (2009)
[33] Mazumdar, A.: Gen. Relativ. Gravit. 26, 307 (1994)
[34] Katore, S.D., Rane, R.S.: Astrophys. Space Sci. 323, 293 (2009) · Zbl 1178.83071
[35] Collins, C.B., Wainwright, J.: Phys. Rev. D 27, 1209 (1983)
[36] Maartens, R.: Class. Quantum Gravity 12, 1455 (1995) · Zbl 0825.83004
[37] Weinberg, S: In: Gravitation and Cosmology, p. 57. Wiley, New York (1972)
[38] Murphy, G.L.: Phys. Rev. D 8, 4231 (1973)
[39] Belinskii, V.A., Khalatnikov, I.M.: Sov. Phys. J. Exp. Theor. Phys. 42, 205 (1976)
[40] Vishwakarma, R.G.: Mon. Not. R. Astron. Soc. 345, 545 (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.