zbMATH — the first resource for mathematics

An augmented model for robust stability analysis of time-varying delay systems. (English) Zbl 1190.93076
Summary: Stability analysis of linear systems with time-varying delay is investigated. In order to highlight the relations between the variation of the delay and the states, redundant equations are introduced to construct a new modelling of the delay system. New types of Lyapunov-Krasovskii functionals are then proposed allowing to reduce the conservatism of the stability criterion. Delay-dependent stability conditions are then formulated in terms of linear matrix inequalities. Finally, several examples show the effectiveness of the proposed methodology.

93D09 Robust stability
34H05 Control problems involving ordinary differential equations
93C05 Linear systems in control theory
15A39 Linear inequalities of matrices
Full Text: DOI
[1] Ariba, Y and Gouaisbaut, F. 2007. Delay-dependent Stability Analysis of Linear Systems with Time-varying Delay. IEEE Conference on Decision and Control,December. 2007. pp.2053–2058.
[2] DOI: 10.1109/9.983374 · Zbl 1364.34101 · doi:10.1109/9.983374
[3] Boyd S, Linear Matrix Inequalities in System and Control Theory, in Studies in Applied Mathematics, Vol. 15, 15 (1994) · Zbl 0816.93004 · doi:10.1137/1.9781611970777
[4] Ebihara, Y, Peaucelle, D, Arzelier, D and Hagiwara, T. 2005. Robust Performance Analysis of Linear Time-invariant Uncertain Systems by Taking Higher-order Time-derivatives of the States. 44th IEEE Conference on Decision and Control and the European Control Conference,December. 2005, Seville, Spain. pp.5030–5035.
[5] DOI: 10.1109/TAC.2002.804462 · Zbl 1364.93564 · doi:10.1109/TAC.2002.804462
[6] Gouaisbaut, F and Peaucelle, D. 2006. Delay-Dependent Robust Stability of Time Delay Systems. 5th IFAC Symposium on Robust Control Design (ROCOND’06),July. 2006, Toulouse, France.
[7] Gu K, Stability of Time-Delay Systems, Control Engineering (2003) · doi:10.1007/978-1-4612-0039-0
[8] DOI: 10.1109/TAC.2006.887907 · Zbl 1366.34097 · doi:10.1109/TAC.2006.887907
[9] DOI: 10.1016/j.automatica.2006.08.015 · Zbl 1111.93073 · doi:10.1016/j.automatica.2006.08.015
[10] Kao, CY and Rantzer, A. 2005. Robust Stability Analysis of Linear Systems with Time-varying Delays. 16th IFAC World Congress. 2005, Prague, Czech Republic.
[11] DOI: 10.1109/9.763213 · Zbl 0964.34065 · doi:10.1109/9.763213
[12] Niculescu S, Delay Effects on Stability. A Robust Control Approach, Vol. 269 of Lecture Notes in Control and Information Sciences (2001)
[13] DOI: 10.1109/TAC.2002.1000275 · Zbl 1364.93576 · doi:10.1109/TAC.2002.1000275
[14] Peaucelle D, European Journal of Control 11 pp 69– (2005) · Zbl 1293.93589 · doi:10.1016/S0947-3580(05)70429-5
[15] DOI: 10.1016/S0005-1098(03)00167-5 · Zbl 1145.93302 · doi:10.1016/S0005-1098(03)00167-5
[16] Skelton R, A unified algebraic approach to linear control design (1998)
[17] DOI: 10.1137/050633238 · Zbl 1125.93054 · doi:10.1137/050633238
[18] DOI: 10.1016/j.automatica.2004.03.004 · Zbl 1059.93108 · doi:10.1016/j.automatica.2004.03.004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.