×

Nonlinear stability of discontinuous Galerkin methods for delay differential equations. (English) Zbl 1191.65111

The authors introduce some stability concepts for numerical methods for delay differential equations and investigate a class of discontinuous Galerkin methods with respect to these properties.

MSC:

65L20 Stability and convergence of numerical methods for ordinary differential equations
65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
65L03 Numerical methods for functional-differential equations
34K28 Numerical approximation of solutions of functional-differential equations (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Bellen, A.; Zennaro, M., Numerical methods for delay differential equations, (2003), Oxford University Press Oxford · Zbl 0749.65042
[2] Brunner, H., Collocation methods for Volterra integral and related functional differential equations, (2004), Cambridge University Press Cambridge · Zbl 1059.65122
[3] Kuang, J.; Cong, Y., Stability of numerical methods for delay differential equations, (2005), Science Press Beijing
[4] Barwell, V.K., Special stability problems for functional equations, Bit, 15, 130-135, (1975) · Zbl 0306.65044
[5] Huang, C.; Fu, H.; Li, S.; Chen, G., Stability analysis of runge – kutta methods for non-linear delay differential equations, Bit, 39, 270-280, (1999) · Zbl 0930.65090
[6] in’t Hout, K.J., A new interpolation procedure for adapting runge – kutta methods to delay differential equations, Bit, 32, 634-649, (1992) · Zbl 0765.65069
[7] Zennaro, M., P-stability of runge – kutta methods for delay differential equations, Numer. math., 49, 305-318, (1986) · Zbl 0598.65056
[8] Zennaro, M., Asymptotic stability analysis of runge – kutta methods for nonlinear systems of delay differential equations, Numer. math., 77, 549-563, (1997) · Zbl 0886.65092
[9] Adjerid, S.; Devine, K.D.; Flaherty, J.E.; Krivodonova, L., A posteriori error estimation for discontinuous glerkin solutions of hyperbolic problems, Comput. methods appl. mech. engrg., 191, 1097-1112, (2002) · Zbl 0998.65098
[10] Cockburn, B., Discontinuous Galerkin methods, ZAMM. Z. angew. math. mech., 83, 11, 731-754, (2003) · Zbl 1036.65079
[11] Delfour, M.; Hager, W.; Trochu, F., Discontinuous Galerkin methods for ordinary differential equations, Math. comput., 36, 455-473, (1981) · Zbl 0469.65053
[12] Ern, A.; Proft, J., A posteriori discontinuous Galerkin error estimates for transient convectioncdiffusion equations, Appl. math. lett., 18, 833-841, (2005) · Zbl 1084.65092
[13] Estep, D., A posteriori error bounds and global error control for approximations of ordinary differential equations, SIMA J. numer. anal., 32, 1-48, (1995) · Zbl 0820.65052
[14] Romkes, A.; Prudhomme, S.; Oden, J.T., A priori error analyses of a stabilized discontinuous Galerkin method, Comput. math. appl., 46, (2003), 1289-1211 · Zbl 1058.65122
[15] Zhang, T.; Li, J.; Zhang, S., Superconvergence of discontinuous Galerkin methods for hyperbolic systems, J. comput. appl. math., 223, 725-734, (2009) · Zbl 1155.65104
[16] C. Zhang, D. Li, The DGFE methods for delay differential equations (submitted for publication)
[17] Torelli, L., Stability of numerical methods for delay differential equations, J. comput. appl. math., 25, 15-26, (1989) · Zbl 0664.65073
[18] Bellen, A.; Zennaro, M., Strong contractivity properties of numerical methods for ordinary and delay differential equations, Appl. numer. math., 9, 321-346, (1992) · Zbl 0749.65042
[19] Huang, C.; Fu, H.; Li, S.; Fu, H.; Chen, G., Nonlinear stability of general linear methods for delay differential equations, Bit, 42, 380-392, (2002) · Zbl 1009.65054
[20] Zhang, C.; Vandewalle, S., Stability analysis of Volterra delay-integro-differential equations and their backward differentiation time discretization, J. comput. appl. math., 164, 797-814, (2004) · Zbl 1047.65117
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.