×

zbMATH — the first resource for mathematics

Numerical solution of fourth-order integro-differential equations using Chebyshev cardinal functions. (English) Zbl 1191.65183
Summary: A numerical technique is presented for the solution of fourth-order integro-differential equations. This method uses the Chebyshev cardinal functions. The method consists of expanding the required approximate solution as the elements of Chebyshev cardinal functions. Using the operational matrix of derivative, we reduce the problem to a set of algebraic equations. Some numerical examples are included to demonstrate the validity and applicability of the technique. The method is easy to implement and produces very accurate results.

MSC:
65R20 Numerical methods for integral equations
45J05 Integro-ordinary differential equations
45G10 Other nonlinear integral equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1016/0362-546X(83)90070-6 · Zbl 0505.45002 · doi:10.1016/0362-546X(83)90070-6
[2] Agarwal R. P., Boundary Value Problems for High Ordinary Differential Equations (1986)
[3] Boyd J. P., Chebyshev and Fourier Spectral Methods, 2. ed. (2001) · Zbl 0994.65128
[4] DOI: 10.1080/00207160500069847 · Zbl 1087.65119 · doi:10.1080/00207160500069847
[5] DOI: 10.1080/00207160701405436 · Zbl 1131.65107 · doi:10.1080/00207160701405436
[6] DOI: 10.2528/PIER07090403 · doi:10.2528/PIER07090403
[7] Dehghan M., Commun. Numer. Methods Eng. (2008)
[8] DOI: 10.1016/j.cam.2005.05.034 · Zbl 1093.65122 · doi:10.1016/j.cam.2005.05.034
[9] DOI: 10.1007/978-1-4612-0101-4 · doi:10.1007/978-1-4612-0101-4
[10] DOI: 10.1016/j.mcm.2007.11.012 · Zbl 1156.92332 · doi:10.1016/j.mcm.2007.11.012
[11] DOI: 10.1007/s00607-008-0009-4 · Zbl 1154.65098 · doi:10.1007/s00607-008-0009-4
[12] DOI: 10.1016/j.camwa.2006.12.055 · Zbl 1141.65399 · doi:10.1016/j.camwa.2006.12.055
[13] Wazwaz A. M., A First Course in Integral Equations (1997) · Zbl 0924.45001
[14] DOI: 10.1016/S0096-3003(99)00225-8 · Zbl 1023.65150 · doi:10.1016/S0096-3003(99)00225-8
[15] DOI: 10.1016/j.amc.2006.03.023 · Zbl 1105.65128 · doi:10.1016/j.amc.2006.03.023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.