×

zbMATH — the first resource for mathematics

Some identities and congruences involving a certain family of numbers. (English) Zbl 1192.05014
In this paper, the authors establish several identities and congruences involving a certain family of numbers associated with the familiar Bernoulli and Euler numbers, the Stirling numbers of the first and second kind, and the central factorial numbers.

MSC:
11B68 Bernoulli and Euler numbers and polynomials
11B65 Binomial coefficients; factorials; \(q\)-identities
11B73 Bell and Stirling numbers
05A19 Combinatorial identities, bijective combinatorics
05A15 Exact enumeration problems, generating functions
11A07 Congruences; primitive roots; residue systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions, Vol. I (McGraw-Hill Book Company, New York, Toronto, and London, 1953). · Zbl 0051.30303
[2] F. T. Howard, ”Applications of a Recurrence for the Bernoulli Numbers,” J. Number Theory 52, 157–172 (1995). · Zbl 0844.11019 · doi:10.1006/jnth.1995.1062
[3] G.-D. Liu, ”The Generalized Central Factorial Numbers and Higher Order Nörlund Euler-Bernoulli Polynomials,” Acta Math. Sinica (Chinese Ser.) 44, 933–946 (2001). · Zbl 1039.11008
[4] G.-D. Liu, ”Summation and Recurrence Formula Involving the Central Factorial Numbers and Zeta Function,” Appl. Math. Comput. 149, 175–186 (2004). · Zbl 1100.11027
[5] G.-D. Liu, ”On Congruences of Euler Numbers Modulo Powers of Two,” J. Number Theory 128, 3063–3071 (2008). · Zbl 1204.11051 · doi:10.1016/j.jnt.2008.04.003
[6] G.-D. Liu and H. M. Srivastava, ”Explicit Formulas for the Nörlund Polynomials B n (x) and b n (x) ,” Comput. Math. Appl. 51, 1377–1384 (2006). · Zbl 1161.11314 · doi:10.1016/j.camwa.2006.02.003
[7] G.-D. Liu and W.-P. Zhang, ”Applications of an Explicit Formula for the Generalized Euler Numbers,” Acta Math. Sin. (Eng. Ser.) 24, 343–352 (2008). · Zbl 1145.11020 · doi:10.1007/s10114-007-1013-x
[8] Y. L. Luke, The Special Functions and Their Approximations, Vol. I (Academic Press, New York and London, 1969). · Zbl 0193.01701
[9] N. E. Nörlund, Vorlesungenüber Differenzenrechnung (Springer, Berlin, 1924; Chelsea, Bronx, New York, 1954).
[10] F. R. Olson, ”Some Determinants Involving Bernoulli and Euler Numbers of Higher Order,” Pacific J. Math. 5, 259–268 (1955). · Zbl 0068.28401 · doi:10.2140/pjm.1955.5.259
[11] J. Riordan, Combinatorial Identities, Wiley Series in Probability and Mathematical Statistics (John Wiley and Sons, New York, London, and Sydney, 1968). · Zbl 0194.00502
[12] H. M. Srivastava, ”Some Formulas for the Bernoulli and Euler Polynomials at Rational Arguments,” Math. Proc. Cambridge Philos. Soc. 129, 77–84 (2000). · Zbl 0978.11004 · doi:10.1017/S0305004100004412
[13] H. M. Srivastava and J. Choi, Series Associated with the Zeta and Related Functions (Kluwer Academic Publishers, Dordrecht, Boston, and London, 2001). · Zbl 1014.33001
[14] H.M. Srivastava, T. Kim, and Y. Simsek, ”q-Bernoulli Numbers and Polynomials Associated with Multiple q-Zeta Functions and Basic L-Series,” Russ. J. Math. Phys. 12, 241–268 (2005). · Zbl 1200.11018
[15] W.-P. Zhang, ”Some Identities Involving the Euler and the Central Factorial Numbers,” Fibonacci Quart. 36, 154–157 (1998). · Zbl 0919.11018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.