×

zbMATH — the first resource for mathematics

Atanassov’s intuitionistic fuzzy grade of hypergroups. (English) Zbl 1192.20065
This paper deals with connections between hypergroupoids and Atanassov’s intuitionistic fuzzy sets. First a sequence of join spaces is associated with a hypergroupoid \(H\); the length of the sequence is called Atanassov’s intuitionistic fuzzy grade of \(H\). Second, a theorem about the existence of a hypergroup with Atanassov’s intuitionistic fuzzy grade equal to \(n\) is proved.

MSC:
20N20 Hypergroups
20N25 Fuzzy groups
08A72 Fuzzy algebraic structures
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Atanassov, K.T., Intuitionistic fuzzy sets, Fuzzy sets syst., 20, 87-96, (1986) · Zbl 0631.03040
[2] Atanassov, K.T., New operations defined over the intuitionistic fuzzy sets, Fuzzy sets syst., 61, 137-142, (1994) · Zbl 0824.04004
[3] Chvalina, J.; Chvalinova, L., State hypergroups of automata, Acta math. inform. univ. ostraviensis, 4, 1, 105-119, (1996) · Zbl 0870.20053
[4] P. Corsini, Prolegomena of Hypergroup Theory, Aviani Editore, 1993. · Zbl 0785.20032
[5] P. Corsini, Join spaces, power sets, fuzzy sets, in: Proc. Fifth International Congress on A.H.A., 1993, Iaşi, Romania, Hadronic Press, 1994, pp. 45-52. · Zbl 0847.20065
[6] Corsini, P., A new connection between hypergroups and fuzzy sets, Southeast Asian bull. math., 27, 221-229, (2003) · Zbl 1059.20062
[7] Corsini, P., Hyperstructures associated with fuzzy sets endowed with two membership functions, J. comb. inform. syst. sci., 31, 247-254, (2006) · Zbl 1231.03042
[8] Corsini, P.; Cristea, I., Fuzzy grade of i.p.s. hypergroups of order less or equal to 6, Pure math. appl., 14, 275-288, (2003) · Zbl 1066.20070
[9] Corsini, P.; Cristea, I., Fuzzy grade of i.p.s. hypergroups of order 7, Iran. J. fuzzy syst., 1, 15-32, (2004) · Zbl 1102.20056
[10] Corsini, P.; Leoreanu, V., Join spaces associated with fuzzy sets, J. combin. inform. syst. sci., 20, 1-4, 293-303, (1995) · Zbl 0887.20045
[11] P. Corsini, V. Leoreanu, Applications of Hyperstructure Theory, Advances in Mathematics, Kluwer Academic Publishers, 2003. · Zbl 1027.20051
[12] Corsini, P.; Tofan, I., On fuzzy hypergroups, Pure math. appl., 8, 29-37, (1997) · Zbl 0906.20049
[13] Cristea, I., A property of the connection between fuzzy sets and hypergroupoids, Ital. J. pure appl. math., 21, 73-82, (2007) · Zbl 1170.20316
[14] I. Cristea, About the fuzzy grade of the direct product of two hypergroupoids, Iran. J. Fuzzy Syst., in press. · Zbl 1218.20049
[15] Cristea, I., Hyperstructures and fuzzy sets endowed with two membership functions, Fuzzy sets syst., 160, 1114-1124, (2009) · Zbl 1184.03052
[16] Davvaz, B., Fuzzy \(H_v\)-groups, Fuzzy sets syst., 101, 191-195, (1999) · Zbl 0935.20065
[17] Davvaz, B., Fuzzy \(H_v\)-submodules, Fuzzy sets syst., 117, 477-484, (2001) · Zbl 0974.16041
[18] Davvaz, B., \(T_H\) and \(S_H\)-interval valued fuzzy subhypergroups, Indian J. pure appl. math., 35, 61-69, (2004) · Zbl 1051.20042
[19] Davvaz, B.; Corsini, P., Generalized fuzzy sub-hyperquasigroups of hyperquasigroups, Soft comput., 10, 1109-1114, (2006) · Zbl 1106.20055
[20] Davvaz, B.; Corsini, P., Redefined fuzzy \(H_v\)-submodules and many valued implications, Inform. sci., 177, 865-875, (2007) · Zbl 1109.16036
[21] Davvaz, B.; Corsini, P.; Leoreanu-Fotea, V., Atanassov’s intuitionistic \((S, T)\)-fuzzy n-ary subhypergroups and their properties, Inform. sci., 179, 654-666, (2009) · Zbl 1179.20067
[22] B. Davvaz, W.A. Dudek, Intuitionistic \(H_v\)-ideals, Int. J. Math. Math. Sci. (2006) Article ID 65921, 11 pp.
[23] Davvaz, B.; Dudek, W.A.; Jun, Y.B., Intuitionistic fuzzy \(H_v\)-submodules, Inform. sci., 176, 285-300, (2006) · Zbl 1090.16028
[24] Davvaz, B.; Zhan, J.; Shum, K.P., Generalized fuzzy \(H_v\)-submodules endowed with interval valued membership functions, Inform. sci., 178, 315-3147, (2008) · Zbl 1149.16035
[25] Dubois, D.; Gottwald, S.; Hajek, P.; Kacprzyk, J.; Prade, H., Terminological difficulties in fuzzy set theory – the case of “intuitionistic fuzzy sets”, Fuzzy sets syst., 156, 485-491, (2005) · Zbl 1098.03061
[26] Dudek, W.A.; Davvaz, B.; Jun, Y.B., On intuitionistic fuzzy sub-hyperquasigroups of hyperquasigroups, Inform. sci., 170, 251-262, (2005) · Zbl 1072.20088
[27] Dudek, W.A.; Zhan, J.; Davvaz, B., On intuitionistic \((S, T)\)-fuzzy hypergroups, Soft comput., 12, 1229-1238, (2008) · Zbl 1154.20061
[28] Hung, W.L.; Yang, M.S., On the J-divergence of intuitionistic fuzzy sets with its application to pattern recognition, Inform. sci., 178, 1641-1650, (2008) · Zbl 1134.68489
[29] Jantosciak, J., Homomorphism, equivalence and reductions in hypergroups, Riv. mat. pura appl., 9, 23-47, (1991) · Zbl 0739.20037
[30] Jantosciak, J., Reduced hypergroups, algebraic hyperstructures and applications, (), 119-122 · Zbl 0791.20087
[31] Jun, Y.B., Quotient structures of intuitionistic fuzzy finite state machines, Inform. sci., 177, 4977-4986, (2007) · Zbl 1129.68040
[32] Jun, Y.B.; Öztürk, M.A.; Park, C.H., Intuitionistic nil radicals of intuitionistic fuzzy ideals and Euclidean intuitionistic fuzzy ideals in rings, Inform. sci., 177, 4662-4677, (2007) · Zbl 1129.16041
[33] Kazanci, O.; Yamak, S.; Davvaz, B., The lower and upper approximations in a quotient hypermodule with respect to fuzzy sets, Inform. sci., 178, 2349-2359, (2008) · Zbl 1141.16040
[34] Kehagias, Ath; Serafimidis, K., The L-fuzzy Nakano hypergroup, Inform. sci., 169, 305-327, (2005) · Zbl 1069.08003
[35] Leoreanu-Fotea, V., A new type of fuzzy n-ary hyperstructures, Inform. sci., 179, 2710-2718, (2009) · Zbl 1187.20072
[36] Leoreanu-Fotea, V.; Davvaz, B., Roughness in n-ary hypergroups, Inform. sci., 178, 4114-4124, (2008) · Zbl 1187.20071
[37] Lupiañez, F.G., Nets and filters in intuitionistic fuzzy topological spaces, Inform. sci., 176, 2396-2404, (2006) · Zbl 1111.54006
[38] F. Marty, Sur une generalization de la notion de group, in: Eighth Congress Math. Scandenaves, Stockholm 1934, pp. 45-49.
[39] Rosenfeld, A., Fuzzy groups, J. math. anal. appl., 35, 512-517, (1971) · Zbl 0194.05501
[40] Serafimidis, K.; Kehagias, Ath, Some remarks on congruences obtained from the L-fuzzy Nakano hyperoperation, Inform. sci., 176, 301-320, (2006) · Zbl 1080.06017
[41] Ştefănescu, M.; Cristea, I., On the fuzzy grade of hypergroups, Fuzzy sets syst., 159, 9, 1097-1106, (2008) · Zbl 1185.20062
[42] Vougiouklis, T., Hyperstructures and their representations, (1994), Hadronic Press Palm Harber, USA · Zbl 0828.20076
[43] Xu, Z.; Chen, J.; Wu, J., Clustering algorithm for intuitionistic fuzzy sets, Inform. sci., 178, 3775-3790, (2008) · Zbl 1256.62040
[44] Yamak, S.; Kazanci, O.; Davvaz, B., Applications of interval valued t-norms (t-conorms) to fuzzy n-ary sub-hypergroups, Inform. sci., 178, 3957-3972, (2008) · Zbl 1187.20073
[45] Zadeh, L.A., Fuzzy sets, Information and control, 8, 338-353, (1965) · Zbl 0139.24606
[46] Zahedi, M.M.; Hasankhani, A., F-polygroups (II), Inform. sci., 89, 225-243, (1996) · Zbl 0880.20052
[47] Zhan, J.; Davvaz, B.; Shum, K.P., A new view of fuzzy hypernear-rings, Inform. sci., 178, 425-438, (2008) · Zbl 1135.16053
[48] Zhou, L.; Wu, W.Z.; Zhang, W.X., On characterization of intuitionistic fuzzy rough sets based on intuitionistic fuzzy implicators, Inform. sci., 179, 883-898, (2009) · Zbl 1162.03317
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.