×

On a max-type difference inequality and its applications. (English) Zbl 1192.39008

Summary: We prove a useful max-type difference inequality which can be applied in studying of some max-type difference equations and give an application of it in a recent problem from the research area. We also give a representation of solutions of the difference equation \(x_{n}= \max\left\{ x_{n-1}^{a_1},\dots ,x_{n-k}^{a_k}\right\}\).

MSC:

39A20 Multiplicative and other generalized difference equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.1080/10236190600949766 · Zbl 1116.39001
[2] DOI: 10.1007/BF02936057 · Zbl 1074.39002
[3] DOI: 10.1016/j.na.2008.11.016 · Zbl 1169.39003
[4] Ars Combinatoria 95 pp 187– (2010)
[5] Advances in Discrete Mathematics and Applications 4 (2005)
[6] Discrete Dynamics in Nature and Society 2010 (2010)
[7] DOI: 10.1016/j.amc.2009.03.039 · Zbl 1178.39011
[8] (1966)
[9] Panamerican Mathematical Journal 10 (4) pp 77– (2000)
[10] Discrete Dynamics in Nature and Society 2007 (2007)
[11] DOI: 10.1016/j.aml.2007.08.008 · Zbl 1152.39012
[12] DOI: 10.1016/j.na.2008.01.014 · Zbl 1162.39011
[13] DOI: 10.1016/j.amc.2009.01.050 · Zbl 1167.39007
[14] DOI: 10.1016/j.amc.2010.01.020 · Zbl 1193.39009
[15] Discrete Dynamics in Nature and Society 2008 (2008)
[16] DOI: 10.1080/10236190701264651 · Zbl 1121.39011
[17] DOI: 10.1016/j.amc.2006.01.005 · Zbl 1148.39303
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.