×

zbMATH — the first resource for mathematics

Iterative methods for generalized equilibrium problems and fixed point problems with applications. (English) Zbl 1192.58010
Summary: We consider an iterative method for finding a common element of the set of a generalized equilibrium problem, of the set of solutions to a system of variational inequalities and of the set of fixed points of a strict pseudo-contraction. Strong convergence theorems are established in the framework of Hilbert spaces. The results presented in this paper improve and extend the corresponding results announced by many others.

MSC:
58E35 Variational inequalities (global problems) in infinite-dimensional spaces
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Browder, F.E.; Petryshyn, W.V., Construction of fixed points of nonlinear mappings in Hilbert space, J. math. anal. appl., 20, 197-228, (1967) · Zbl 0153.45701
[2] L.C. Ceng, S. Al-Homidan, Q.H. Ansari, J.C. Yao, An iterative scheme for equilibrium problems and fixed point problems of strict pseudo-contraction mappings, J. Comput. Appl. Math. doi:10.1016/j.cam.2008.03.032 · Zbl 1167.47307
[3] Ceng, L.C.; Yao, J.C., Hybrid viscosity approximation schemes for equilibrium problems and fixed point problems of infinitely many nonexpansive mappings, Appl. math. comput., 198, 729-741, (2008) · Zbl 1151.65058
[4] Chang, S.S.; Lee, H.W.J.; Chan, C.K., A new method for solving equilibrium problem fixed point problem and variational inequality problem with application to optimization, Nonlinear anal., 70, 3307-3319, (2009) · Zbl 1198.47082
[5] Colao, V.; Marino, G.; Xu, H.K., An iterative method for finding common solutions of equilibrium and fixed point problems, J. math. anal. appl., 344, 340-352, (2008) · Zbl 1141.47040
[6] Qin, X.; Shang, M.; Su, Y., Strong convergence of a general iterative algorithm for equilibrium problems and variational inequality problems, Math. comput. modelling, 48, 1033-1046, (2008) · Zbl 1187.65058
[7] Qin, X.; Cho, Y.J.; Kang, S.M., Convergence theorems of common elements for equilibrium problems and fixed point problems in Banach spaces, J. comput. appl. math., 225, 20-30, (2009) · Zbl 1165.65027
[8] Su, Y.; Shang, M.; Qin, X., An iterative method of solution for equilibrium and optimization problems, Nonlinear anal., 69, 2709-2719, (2008) · Zbl 1170.47047
[9] Takahashi, S.; Takahashi, W., Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. math. anal. appl., 331, 506-515, (2007) · Zbl 1122.47056
[10] Tada, A.; Takahashi, W., Strong convergence theorem for an equilibrium problem and a nonexpansive mapping, J. optim. theory appl., 133, 359-370, (2007) · Zbl 1147.47052
[11] Ceng, L.C.; Yao, J.C., Relaxed viscosity approximation methods for fixed point problems and variational inequality problems, Nonlinear anal., 69, 3299-3309, (2008) · Zbl 1163.47052
[12] Ceng, L.C.; Wang, C.Y.; Yao, J.C., Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities, Math. methods oper. res., 67, 375-390, (2008) · Zbl 1147.49007
[13] Iiduka, H.; Takahashi, W., Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings, Nonlinear anal., 61, 341-350, (2005) · Zbl 1093.47058
[14] Iiduka, H.; Takahashi, W., Weak convergence theorem by Cesàro means for nonexpansive mappings and inverse-strongly monotone mappings, J. nonlinear convex anal., 7, 105-113, (2006) · Zbl 1104.47059
[15] Qin, X.; Kang, S.M.; Shang, M., Generalized system for relaxed cocoercive variational inequalities in Hilbert spaces, Appl. anal., 87, 421-430, (2008) · Zbl 1149.47051
[16] Qin, X.; Noor, M.A., General wiener – hopf equation technique for nonexpansive mappings and general variational inequalities in Hilbert spaces, Appl. math. comput., 201, 716-722, (2008) · Zbl 1157.65041
[17] Qin, X.; Shang, M.; Zhou, H., Strong convergence of a general iterative method for variational inequality problems and fixed point problems in Hilbert spaces, Appl. math. comput., 200, 242-253, (2008) · Zbl 1147.65048
[18] Qin, X.; Cho, Y.J.; Kang, S.M., Some results on nonexpansive mappings and relaxed cocoercive mappings in Hilbert spaces, Appl. anal., 88, 1-13, (2009) · Zbl 1204.47084
[19] Takahashi, W.; Toyoda, M., Weak convergence theorems for nonexpansive mappings and monotone mappings, J. optim. theory appl., 118, 417-428, (2003) · Zbl 1055.47052
[20] Yao, Y.; Yao, J.C., On modified iterative method for nonexpansive mappings and monotone mappings, Appl. math. comput., 186, 1551-1558, (2007) · Zbl 1121.65064
[21] Verma, R.U., Generalized system for relaxed cocoercive variational inequalities and its projection methods, J. optim. theory appl., 121, 203-210, (2004) · Zbl 1056.49017
[22] Verma, R.U., Generalized class of partial relaxed monotonicity and its connections, Adv. nonlinear var. inequal., 7, 155-164, (2004) · Zbl 1079.49011
[23] Verma, R.U., General convergence analysis for two-step projection methods and applications to variational problems, Appl. math. lett., 18, 1286-1292, (2005) · Zbl 1099.47054
[24] Verma, R.U., On a new system of nonlinear variational inequalities and associated iterative algorithms, Math. sci. res. hot-line, 3, 65-68, (1999) · Zbl 0970.49011
[25] Blum, E.; Oettli, W., From optimization and variational inequalities to equilibrium problems, Math. student, 63, 123-145, (1994) · Zbl 0888.49007
[26] Moudafi, A.; Théra, M., (), 187-201
[27] Takahashi, S.; Takahashi, W., Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space, Nonlinear anal., 69, 1025-1033, (2008) · Zbl 1142.47350
[28] Combettes, P.L.; Hirstoaga, S.A., Equilibrium programming in Hilbert spaces, J. nonlinear convex anal., 6, 117-136, (2005) · Zbl 1109.90079
[29] Zhou, Y., Convergence theorems of fixed points for \(k\)-strict pseudo-contractions in Hilbert spaces, Nonlinear anal., 69, 456-462, (2008) · Zbl 1220.47139
[30] Suzuki, T., Strong convergence of Krasnoselskii and mann’s type sequences for one-parameter nonexpansive semigroups without bochne integrals, J. math. anal. appl., 305, 227-239, (2005) · Zbl 1068.47085
[31] Xu, H.K., Iterative algorithms for nonlinear operators, J. London math. soc., 66, 240-256, (2002) · Zbl 1013.47032
[32] Browder, F.E., Convergence of approximants to fixed points of nonexpansive nonlinear mappings in Banach spaces, Arch. ration. mech. anal., 24, 82-90, (1967) · Zbl 0148.13601
[33] Bruck, R.E., Properties of fixed point sets of nonexpansive mappings in Banach spaces, Trans. amer. math. soc., 179, 251-262, (1973) · Zbl 0265.47043
[34] Suzuki, T., Moudafi’s viscosity approximations with Meir-Keeler contractions, J. math. anal. appl., 325, 342-352, (2007) · Zbl 1111.47059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.