Conservation laws for third-order variant Boussinesq system. (English) Zbl 1193.35104

Summary: The conservation laws for the variant Boussinesq system are derived by an interesting method of increasing the order of partial differential equations. The variant Boussinesq system is a third-order system of two partial differential equations. The transformations \(u\rightarrow U_x, v\rightarrow V_x\) are used to convert the variant Boussinesq system to a fourth order system in \(U,V\) variables. It is interesting that a standard Lagrangian exists for the fourth-order system. Noether’s approach is then used to derive the conservation laws. Finally, the conservation laws are expressed in the variables \(u,v\) and they constitute the conservation laws for the third-order variant Boussinesq system. Infinitely many nonlocal conserved quantities are found for the variant Boussinesq system.


35L65 Hyperbolic conservation laws
35B06 Symmetries, invariants, etc. in context of PDEs
35Q35 PDEs in connection with fluid mechanics
Full Text: DOI


[1] Naz, R.; Mason, D.P.; Mahomed, F.M., Conservation laws and conserved quantities for laminar two-dimensional and radial jets, Nonlinear anal. RWA, 10, 2641-2651, (2009) · Zbl 1177.35171
[2] Noether, E., Invariante variationsprobleme, Nachr. König. gesell. wiss. Göttingen math.-phys. kl. heft 2, 235-257, (1918), English translation in Transport Theory and Statistical Physics 1 (3) (1971) 186-207 · JFM 46.0770.01
[3] P.S. Laplace, Traité de Mécanique Céleste, vol. 1, Paris, 1798. English translation, Celestial Mechanics, New York, 1966.
[4] Steudel, H., Uber die zuordnung zwischen invarianzeigenschaften und erhaltungssatzen, Z. naturforsch. A, 17, 129-132, (1962)
[5] Olver, P.J., Applications of Lie groups to differential equations, (1993), Springer New York · Zbl 0785.58003
[6] Wolf, T., A comparison of four approaches to the calculation of conservation laws, European J. appl. math., 13, 129-152, (2002) · Zbl 1002.35008
[7] Kara, A.H.; Mahomed, F.M., Relationship between symmetries and conservation laws, Int. J. theor. phys., 39, 23-40, (2000) · Zbl 0962.35009
[8] Kara, A.H.; Mahomed, F.M., Noether-type symmetries and conservation laws via partial lagragians, Nonlinear dynam., 45, 367-383, (2006) · Zbl 1121.70014
[9] Naz, R.; Mahomed, F.M.; Mason, D.P., Comparison of different approaches to conservation laws for some partial differential equations in fluid mechanics, Appl. math. comput., 205, 212-230, (2008) · Zbl 1153.76051
[10] Wang, M., Solitary wave solutions for variant Boussinesq equations, Phys. lett. A, 199, 169-172, (1995) · Zbl 1020.35528
[11] Fu, Z.; Liu, S., New transformations and new approach to find exact solutions to nonlinear equations, Phys. lett. A, 299, 507-512, (2002) · Zbl 0996.35044
[12] Ali, A.H.A.; Soliman, A.A., New exact solutions of some nonlinear partial differential equations, Int. J. nonlinear sci., 5, 79-88, (2008) · Zbl 1394.35073
[13] Yasar, Emrullah, Variational principles and conservation laws to the burridge – knopoff equation, Nonlinear dynam., 54, 307-312, (2008) · Zbl 1173.35667
[14] Bluman, G., Use and construction of potential symmetries, Math. comput. modelling, 8, 1-14, (1993) · Zbl 0792.35008
[15] A.H. Bokhari, A.Y. Dweik, F.D. Zaman, A.H. Kara, F.M. Mahomed, Generalization of the double reduction theory, doi:10.1016/j.nonrwa.2010.02.2006. · Zbl 1201.35014
[16] Naz, R.; Mason, D.P.; Mahomed, F.M., Conservation laws via the partial Lagrangian and group invariant solutions for radial and two-dimensional free jets, Nonlinear anal. RWA, 10, 3457-3465, (2009) · Zbl 1269.76022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.