Csernák, Gábor; Stépán, Gábor Digital control as source of chaotic behavior. (English) Zbl 1193.37041 Int. J. Bifurcation Chaos Appl. Sci. Eng. 20, No. 5, 1365-1378 (2010). Cited in 4 Documents MSC: 37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior 37E30 Dynamical systems involving homeomorphisms and diffeomorphisms of planes and surfaces 93C62 Digital control/observation systems Keywords:digital control; micro-chaos; 2D map PDF BibTeX XML Cite \textit{G. Csernák} and \textit{G. Stépán}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 20, No. 5, 1365--1378 (2010; Zbl 1193.37041) Full Text: DOI References: [1] DOI: 10.1142/S0218127407017549 · Zbl 1139.37019 · doi:10.1142/S0218127407017549 [2] DOI: 10.1142/3033 · doi:10.1142/3033 [3] Conti P., Accrd. Lincei. 11 pp 16– [4] DOI: 10.1007/s00332-004-0620-2 · Zbl 1123.70318 · doi:10.1007/s00332-004-0620-2 [5] DOI: 10.3311/pp.me.2007-2.03 · doi:10.3311/pp.me.2007-2.03 [6] DOI: 10.1177/107754639800400405 · Zbl 0949.70520 · doi:10.1177/107754639800400405 [7] Galton G., Engineering 25 pp 469– [8] Gidea M., J. Diff. Eq. 202 pp 32– [9] DOI: 10.1007/BF02440161 · Zbl 0863.93050 · doi:10.1007/BF02440161 [10] Kuo B. C., Digital Control Systems (1977) [11] DOI: 10.1137/030600461 · Zbl 1170.93366 · doi:10.1137/030600461 [12] DOI: 10.1090/S0273-0979-1995-00558-6 · Zbl 0820.58042 · doi:10.1090/S0273-0979-1995-00558-6 [13] DOI: 10.1098/rsta.1990.0102 · Zbl 0709.70019 · doi:10.1098/rsta.1990.0102 [14] Robinson C., Studies in Advanced Mathematics, in: Dynamical Systems. Stability, Symbolic Dynamics, and Chaos (1995) · Zbl 0853.58001 [15] DOI: 10.1016/j.physd.2004.07.007 · Zbl 1070.34105 · doi:10.1016/j.physd.2004.07.007 [16] T. Tél, Directions in Chaos 3, ed. B.L. Hao (World Scientific, Singapore, 1990) pp. 149–211. [17] DOI: 10.1017/CBO9780511803277 · Zbl 1108.70001 · doi:10.1017/CBO9780511803277 [18] DOI: 10.1016/S0764-4442(99)80439-X · Zbl 0935.34050 · doi:10.1016/S0764-4442(99)80439-X [19] DOI: 10.1007/978-1-4757-4067-7 · doi:10.1007/978-1-4757-4067-7 [20] DOI: 10.1016/j.jmatprotec.2003.10.011 · doi:10.1016/j.jmatprotec.2003.10.011 [21] Zgliczinski P., Topol. Methods. Nonlin. Anal. 8 pp 169– [22] DOI: 10.1088/0951-7715/10/1/016 · Zbl 0907.58048 · doi:10.1088/0951-7715/10/1/016 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.