zbMATH — the first resource for mathematics

Periodic point, endpoint, and convergence theorems for dissipative set-valued dynamic systems with generalized pseudodistances in cone uniform and uniform spaces. (English) Zbl 1193.37101
A set-valued dynamical system is defined as a pair \((X,T)\), where \(X\) is a certain space and \(T\) is a set-valued map \(T: X\rightarrow 2^X \).
The authors introduce in cone uniform and uniform spaces three kinds of dissipative set-valued dynamical systems with generalized pseudodistances and with not necessarily lower semicontinuous entropies, and the methods which are useful for establishing general conditions guaranteeing the existence of periodic points and endpoints of the set-valued dynamical systems and conditions that for each starting point the dynamical process or generalized sequences of iterations converge and the limit is a periodic point or endpoint, are presented. The definitions and results of the paper are more general and different from those given in the literature and are new even for single-valued and set-valued dynamical systems in metric spaces. The paper is a continuation of two papers of the authors.
Examples are given.

37L05 General theory of infinite-dimensional dissipative dynamical systems, nonlinear semigroups, evolution equations
37L99 Infinite-dimensional dissipative dynamical systems
PDF BibTeX Cite
Full Text: DOI EuDML
[1] doi:10.2307/2042331 · Zbl 0446.47049
[6] doi:10.1016/0893-9659(95)00089-9 · Zbl 0837.54011
[7] doi:10.2307/1999724 · Zbl 0305.47029
[8] doi:10.1016/0022-247X(74)90025-0 · Zbl 0286.49015
[9] doi:10.1016/S0022-247X(02)00612-1 · Zbl 1022.47036
[12] doi:10.1016/S0362-546X(01)00395-9 · Zbl 1042.54506
[13] doi:10.1016/S0893-9659(02)00044-7 · Zbl 1009.37006
[15] doi:10.1023/A:1005722506504 · Zbl 0871.47048
[17] doi:10.1007/BF00276493 · Zbl 0252.93002
[19] doi:10.1007/BF01764426 · Zbl 0393.90109
[20] doi:10.1137/0314062 · Zbl 0363.90145
[22] doi:10.1016/j.na.2009.03.076 · Zbl 1203.54051
[23] doi:10.1016/j.na.2009.07.024 · Zbl 1185.54020
[27] doi:10.1016/j.jmaa.2005.03.087 · Zbl 1118.54022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.