×

zbMATH — the first resource for mathematics

Complete spacelike hypersurfaces with constant mean curvature in \(-\mathbb R\times \mathbb H^n\). (English) Zbl 1193.53124
By applying the Omori-Yau generalized maximum principle for complete Riemannian manifolds, the authors prove the following Bernstein-type results:
Theorem 1.1. Let \(\psi:\Sigma^n\to-\mathbb{R}\times\mathbb{H}^n\) be a complete space-like hypersurface with constant mean curvature \(H\). If the height function \(h\) of \(\Sigma^n\) satisfies, for some constant \(0<\alpha<1\), \(\displaystyle|\nabla h|^2\leq\frac{n\alpha}{n-1}H^2\), then \(\Sigma^n\) is a slice.
Theorem 1.2. Let \(\psi:\Sigma^n\to-\mathbb{R}\times\mathbb{H}^n\) be a complete space-like hypersurface with constant mean curvature \(H\), and the 2-mean curvature \(H_2\) bounded from below. If the height function \(h\) of \(\Sigma^n\) satisfies, for some constant \(0<\alpha<1\), \(\displaystyle |\nabla h|^2\leq\frac{\alpha}{n-1}|A|^2\), where \(|A|^2\) denotes the squared norm of the shape operator \(A\), then \(\Sigma^n\) is a slice.
The first author has given some examples of complete and non-complete entire maximal graphs in \(-\mathbb{R}\times\mathbb{H}^2\) which are not slices [see, Differ. Geom. Appl. 26, No. 4, 456–462 (2008; Zbl 1147.53047)].

MSC:
53C40 Global submanifolds
53C50 Global differential geometry of Lorentz manifolds, manifolds with indefinite metrics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Albujer, A.L., New examples of entire maximal graphs in \(\mathbb{H}^2 \times \mathbb{R}_1\), Differential geom. appl., 26, 456-462, (2008) · Zbl 1147.53047
[2] Albujer, A.L.; Alías, L.J., Calabi – bernstein results for maximal surfaces in Lorentzian product spaces, J. geom. phys., 59, 620-631, (2009) · Zbl 1173.53025
[3] Albujer, A.L.; Alías, L.J., Spacelike hypersurfaces with constant Mean curvature in the steady state space, Proc. amer. math. soc., 137, 711-721, (2009) · Zbl 1162.53043
[4] Alías, L.J.; Brasil, A.; Colares, A.G., Integral formulae for spacelike hypersurfaces in conformally stationary spacetimes and applications, Proc. edinb. math. soc., 46, 465-488, (2003) · Zbl 1053.53038
[5] Alías, L.J.; Colares, A.G., Uniqueness of spacelike hypersurfaces with constant higher order Mean curvature in generalized robertson – walker spacetimes, Math. proc. Cambridge philos. soc., 143, 703-729, (2007) · Zbl 1131.53035
[6] Alías, L.J.; Romero, A.; Sánchez, M., Uniqueness of complete spacelike hypersurfaces of constant Mean curvature in generalized robertson – walker spacetimes, Gen. relativity gravitation, 27, 71-84, (1995) · Zbl 0908.53034
[7] Caminha, A.; de Lima, H.F., Complete vertical graphs with constant mean curvature in semi-Riemannian warped products, Bull. belg. math. soc., 16, 91-105, (2009) · Zbl 1160.53362
[8] Omori, H., Isometric immersions of Riemannian manifolds, J. math. soc. Japan, 19, 205-214, (1967) · Zbl 0154.21501
[9] O’Neill, B., Semi-Riemannian geometry with applications to relativity, (1983), Academic Press London · Zbl 0531.53051
[10] Yau, S.T., Harmonic functions on complete Riemannian manifolds, Comm. pure appl. math., 28, 201-228, (1975) · Zbl 0291.31002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.