×

Subdomain-based flux-free a posteriori error estimators. (English) Zbl 1193.65191

Summary: A new residual type flux-free error estimator is presented. It estimates upper and lower bounds of the error in energy norm. The proposed approach precludes the main drawbacks of standard residual type estimators, circumvents the need of flux-equilibration and results in a simple implementation that uses standard resources available in finite element codes. This is specially interesting for 3D applications where the implementation of this technique is as simple as in 2D. Recall that on the contrary, the complexity of the flux-equilibration techniques increases drastically in the 3D case. The bounds for the energy norm of the error are used to produce upper and lower bounds of linear functional outputs, representing quantities of engineering interest. The presented estimators demonstrate their efficiency in numerical tests producing sharp estimates both for the energy and the quantities of interest.

MSC:

65N15 Error bounds for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI Link

References:

[1] Paraschivoiu, M.; Peraire, J.; Patera, A.T., A posteriori finite element bounds for linear-functional outputs of elliptic partial differential equations, Comput. methods appl. mech. engrg., 150, 1-4, 289-312, (1997), Symposium on Advances in Computational Mechanics, Austin, TX, vol. 2, 1997 · Zbl 0907.65102
[2] Ainsworth, M.; Oden, J.T., A posteriori error estimation in finite element analysis, (2000), John Wiley & Sons Chichester · Zbl 1008.65076
[3] Oden, J.T.; Prudhomme, S., Goal-oriented error estimation and adaptivity for the finite element method, Comput. math. appl., 41, 5-6, 735-756, (2001) · Zbl 0987.65110
[4] Ladevèze, P.; Leguillon, D., Error estimate procedure in the finite element method and applications, SIAM J. numer. anal., 20, 3, 485-509, (1983) · Zbl 0582.65078
[5] Carstensen, C.; Funken, S.A., Fully reliable localized error control in the FEM, SIAM J. sci. comput., 21, 4, 1465-1484, (1999/00), (electronic) · Zbl 0956.65099
[6] Machiels, L.; Maday, Y.; Patera, A.T., A “flux-free” nodal Neumann subproblem approach to output bounds for partial differential equations, C.R. acad. sci. Paris Sér. I math., 330, 3, 249-254, (2000) · Zbl 0946.65101
[7] Morin, P.; Nochetto, R.H.; Siebert, K.G., Local problems on stars: a posteriori error estimators, convergence, and performance, Math. comput., 72, 243, 1067-1097, (2003) · Zbl 1019.65083
[8] Choi, H.-W.; Paraschivoiu, M., Adaptive computations of a posteriori finite element output bounds: a comparison of the “hybrid-flux“ approach and the “flux-free” approach, Comput. methods appl. mech. engrg., 193, 36-38, 4001-4033, (2004) · Zbl 1079.74635
[9] Maday, Y.; Patera, A.T.; Peraire, J., A general formulation for a posteriori bounds for output functionals of partial differential equations; application to the eigenvalue problem, C.R. acad. sci. Paris Sér. I math., 328, 9, 823-828, (1999) · Zbl 0933.65129
[10] Prudhomme, S.; Oden, J.T., On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors, Comput. methods appl. mech. engrg., 176, 1-4, 313-331, (1999), New advances in computational methods, Cachan, 1997 · Zbl 0945.65123
[11] Patera, A.T.; Peraire, J., A general Lagrangian formulation for the computation of a posteriori finite element bounds, (), 159-206 · Zbl 1141.76426
[12] Babuška, I.; Rheinboldt, W.C., Error estimates for adaptive finite element computations, SIAM J. numer. anal., 15, 4, 736-754, (1978) · Zbl 0398.65069
[13] Díez, P.; Parés, N.; Huerta, A., Recovering lower bounds of the error by postprocessing implicit residual a posteriori error estimates, Int. J. numer. methods engrg., 56, 10, 1465-1488, (2003) · Zbl 1052.65105
[14] Huerta, A.; Díez, P., Error estimation including pollution assessment for nonlinear finite element analysis, Comput. methods appl. mech. engrg., 181, 1-3, 21-41, (2000) · Zbl 0964.74067
[15] Brenner, S.C.; Scott, L.R., The mathematical theory of finite element methods, Texts in applied mathematics, vol. 15, (2002), Springer-Verlag New York · Zbl 1012.65115
[16] Bank, R.E.; Weiser, A., Some a posteriori error estimators for elliptic partial differential equations, Math. comput., 44, 170, 283-301, (1985) · Zbl 0569.65079
[17] Ainsworth, M.; Oden, J.T., A unified approach to a posteriori error estimation using element residual methods, Numer. math., 65, 1, 23-50, (1993) · Zbl 0797.65080
[18] Babuška, I.; Strouboulis, T.; Upadhyay, C.S.; Gangaraj, S.K.; Copps, K., Validation of a posteriori error estimators by numerical approach, Int. J. numer. methods engrg., 37, 7, 1073-1123, (1994) · Zbl 0811.65088
[19] Peraire, J.; Patera, A.T., Bounds for linear-functional outputs of coercive partial differential equations: local indicators and adaptive refinement, (), 199-216
[20] Florentin, E.; Gallimard, L.; Pelle, J.P., Evaluation of the local quality of stresses in 3D finite element analysis, Comput. methods appl. mech. engrg., 191, 39-40, 4441-4457, (2002) · Zbl 1040.74045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.