# zbMATH — the first resource for mathematics

Nyström type methods for Fredholm integral equations with weak singularities. (English) Zbl 1193.65226
Nyström type methods are constructed and justified for a class of Fredholm integral equations of the second kind
$u(x)=\int_0^1[a(x,y)|x-y|^{-v}+b(x,y)] u(y)dy=f(x), \;\;0\leq x\leq 1,$
where $$0<v<1,$$ functions $$a(x,y)$$ and $$b(x,y)$$ may have boundary singularities with respect to $$y:$$
$a(x,y),b(x,y)\in C^m([0,1]\times (0,1)), m\in N_0,$
$\left|\left(\frac{\partial}{\partial x} \right)^k \left( \frac{\partial}{\partial y} \right)^l a(x,y) \right|\leq cy^{-\lambda_0-l}(1-y)^{-\lambda_1-l}$
$\left|\left(\frac{\partial}{\partial x} \right)^k \left( \frac{\partial}{\partial y} \right)^l b(x,y)\right|\leq c y ^{-\mu_0-l}(1-y)^{-\mu_1-l}$
where $$(x,y)\in [0,1]\times (0,1),\;\;k,l\in N_0,\;\;k+l\leq m,$$ $$\lambda_0,\lambda_1,\mu_0,\mu_1\in R,$$ $$\mu_0,\mu_1<1,$$ $$N_0={0}\cup N,$$ $$N={1,2,\dots}, R\in (-\infty,\infty)$$.
The proposed approach is based on a suitable smoothing change of variables and product integration techniques. Global convergence estimates are derived and a collection of numerical results is given.

##### MSC:
 65R20 Numerical methods for integral equations 45B05 Fredholm integral equations 45E10 Integral equations of the convolution type (Abel, Picard, Toeplitz and Wiener-Hopf type)
Full Text:
##### References:
  Atkinson, K.E., The numerical solution of integral equations of the second kind, (1997), Cambridge Univ. Press Cambridge · Zbl 0155.47404  Graham, I.G., Singularity expansions for solutions of second kind Fredholm integral equations with weakly singular convolution kernels, J. integral equations, 4, 1-30, (1982) · Zbl 0482.45003  Vainikko, G.; Pedas, A., The properties of solutions of weakly singular integral equations, J. aust. math. soc. ser. B, 22, 419-430, (1981) · Zbl 0475.65085  Baker, C.T.H., The numerical treatment of integral equations, (1977), Clarendon Press Oxford · Zbl 0217.53103  Brunner, H., Collocation methods for Volterra integral and related functional equations, (2004), Cambridge Univ. Press Cambridge · Zbl 1059.65122  Brunner, H.; van der Houwen, P.J., The numerical solution of Volterra equations, (1986), North-Holland Amsterdam · Zbl 0611.65092  Hackbusch, W., Integral equations, (1995), Birkhäuser Basel  Schneider, C., Product integration for weakly singular integral equations, Math. comp., 36, 207-213, (1981) · Zbl 0474.65095  Xu, Y.; Zhao, Y., Quadratures for improper integrals and their applications in integral equations, Proc. sympos. appl. math., 48, 409-413, (1994) · Zbl 0815.65034  Baratella, P.; Orsi, A.P., A new approach to the numerical solution of weakly singular Volterra integral equations, J. comput. appl. math., 163, 401-418, (2004) · Zbl 1038.65144  Monegato, G.; Scuderi, L., High order methods for weakly singular integral equations with nonsmooth input functions, Math. comp., 67, 1493-1515, (1998) · Zbl 0907.65139  Pedas, A.; Vainikko, G., Smoothing transformation and piecewise polynomial collocation for weakly singular Volterra integral equations, Computing, 73, 271-293, (2004) · Zbl 1063.65147  Pedas, A.; Vainikko, G., Smoothing transformation and piecewise polynomial projection methods for weakly singular Fredholm integral equations, Commun. pure appl. anal., 5, 395-413, (2006) · Zbl 1133.65118  Pedas, A.; Vainikko, G., Piecewise polynomial approximations for integral equations with diagonal and boundary singularities, J. anal., 14, 159-173, (2006) · Zbl 1192.65164  Tamme, E., Numerical computation of weakly singular integrals, Proc. Estonian acad. sci. phys. math., 49, 215-224, (2000) · Zbl 0973.65017  Elliott, D., The cruciform crack problem and sigmoidal transformations, Math. methods appl. sci., 20, 121-132, (1997) · Zbl 0865.73044  Elliott, D., Sigmoidal transformations and the trapezoidal rule, J. aust. math. soc. ser. B, 40, E77-E137, (1998) · Zbl 0928.65033  Johnston, P.R., Application of sigmoidal transformations to weakly singular and near singular boundary element integrals, Internat. J. numer. methods engrg., 45, 1333-1348, (1999) · Zbl 0935.65130  Johnston, P.R.; Elliott, D., Error estimation of quadrature rules for evaluating singular integrals in boundary element, Internat. J. numer. methods engrg., 48, 949-962, (2000) · Zbl 0962.65092  Kaneko, H.; Xu, Y., Gauss-type quadratures for weakly singular integrals and their applications to Fredholm integral equations of the second kind, Math. comp., 62, 739-753, (1994) · Zbl 0799.65023  Köhler, P., Order-preserving mesh spacing for compound quadrature formulas and functions with endpoint singularities, SIAM J. numer. anal., 32, 671-686, (1995) · Zbl 0822.41027  Laurie, D.P., Periodizing transformation for numerical integration, J. comput. appl. math., 66, 337-344, (1996) · Zbl 0858.65016  Monegato, G.; Scuderi, L., Numerical integration of functions with boundary singularities, J. comput. anal. math., 112, 201-214, (1998) · Zbl 0940.65027  Sidi, A., A new variable transformation for numerical integration, (), 359-373 · Zbl 0791.41027  Singh, K.M.; Tanaka, M., On non-linear transformations for accurate numerical evaluation of weakly singular integrals, Internat. J. numer. methods engrg., 50, 2007-2030, (2001) · Zbl 0978.65111  Yun, B.I., An efficient transformation with Gauss quadrature rule for weakly singular integrals, Comm. numer. methods engrg., 17, 881-891, (2001) · Zbl 0994.65024  Yun, B.I.; Kim, P., A new sigmoidal transformation for weakly singular integrals in the boundary element method, SIAM J. sci. comput., 24, 1203-1217, (2003) · Zbl 1036.65031  Vainikko, E.; Vainikko, G., A spline product quasi-interpolation method for weakly singular Fredholm integral equations, SIAM J. numer. anal., 46, 1799-1820, (2008) · Zbl 1188.65179  Kress, R., Linear integral equations, (1989), Springer Berlin  Pedas, A.; Vainikko, G., Integral equations with diagonal and boundary singularities of the kernel, Z. anal. anwend., 25, 487-516, (2006) · Zbl 1118.45003  Pedas, A.; Vainikko, G., On the regularity of solutions to integral equations with nonsmooth kernels on a union of open intervals, J. comput. appl. math., 229, 440-451, (2009) · Zbl 1168.45003  Vainikko, G., Multidimensional weakly singular integral equations, (1993), Springer-Verlag Berlin · Zbl 0789.65097  Anselone, P.M., Collectively compact operator approximation theory, (1971), Prentice-Hall Englewood Cliffs, NJ · Zbl 0228.47001  Vainikko, G., Funktionalanalysis der diskretisierungsmethoden, (1976), Teubner Leipzig · Zbl 0343.65023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.