Evolutionary programming based on non-uniform mutation. (English) Zbl 1193.68220

Summary: A new evolutionary programming using non-uniform mutation instead of Gaussian, Cauchy and Lévy mutations is proposed. Evolutionary programming with non-uniform mutation (NEP) has the merits of searching the space uniformly at the early stage and very locally at the later stage during the programming. For a suite of 14 benchmark problems, NEP outperforms the improved evolutionary programming using mutation based on Lévy probability distribution (ILEP) for multimodal functions with many local minima while being comparable to ILEP in performance for unimodal and multimodal functions with only a few minima. The detailed theoretical analysis of the executing process of NEP and the expected step size on non-uniform mutation are given.


68T05 Learning and adaptive systems in artificial intelligence
92D15 Problems related to evolution


Full Text: DOI Link


[1] Fraser, A.S., Simulation of genetic system by automatic digital computers. I. introduction, Austral. J. biol. sci., 10, 484-491, (1957)
[2] Bremerman, H.J., Optimization through evolution and recombination, (), 93-106
[3] Holland, J.H., Adaptation in natural and artificial systems, (1975), University of Michigan Press Ann Arbor
[4] Goldberg, D.E., Genetic algorithms in search, optimization and machine learning, (1989), Addison-Wesley Reading, MA · Zbl 0721.68056
[5] Kuo, T.; Huwang, S.Y., A genetic algorithm with disruptive selection, IEEE trans. syst. man cybern., 26, 2, 299-307, (1996)
[6] Schwefel, H.P., Numerical optimization of computer models, (1977), Wiley New York
[7] Yao, X.; Liu, Y., Fast evolution strategies, Contr. cybern., 26, 3, 467-496, (1997) · Zbl 0900.93354
[8] Fogel, L.J.; Owens, A.J.; Walsh, M.J., Artificial intelligence through simulated evolution, (1966), Wiley New York · Zbl 0148.40701
[9] Fogel, D.B., Evolutionary computation: toward a new philosophy of machine intelligence, (1995), IEEE Press New York
[10] Michalewicz, Z., Genetic algorithms+data structures=evolution programs, (1996), Springer New York · Zbl 0841.68047
[11] D.B. Fogel, L.J. Fogel, J.W. Atmar, Meta-evolutionary Programming, in: R. Chen (Ed.), Proc. 25th Asilomer Conf. Sigals, Systems and Computers, 1991, pp. 540-545.
[12] D.B. Fogel, Evolving artificial intelligence, Ph.D. Dissertation, University of California, 1992.
[13] N. Saravanan, D.B. Fogel, Learning of strategy parameters in evolutionary programming: an empirical study, in: A. Sebald, L. Fogel (Eds.), Proc. 3rd Annual Conf. Evolutionary Programming, 1994, pp. 269-280.
[14] Yao, X.; Liu, Y.; Lin, G.M., Evolutionary programming made faster, IEEE trans. evol. comput., 3, 2, 82-102, (1999)
[15] Lee, C.Y.; Yao, X., Evolutionary programming using mutations based on the levy probability distribution, IEEE trans. evol. comput., 8, 1, 1-13, (2004)
[16] Zhao, X.C., A greedy genetic algorithm for unconstrained global optimization, J. syst. sci. complex., 18, 1, 102-110, (2005) · Zbl 1135.90442
[17] Zhao, X.C.; Long, H.L., Multiple bit encoding-based search algorithms, (), 1996-2001
[18] Coskun, H.; Fevzi, K., A heuristic approach for finding the global minimum: adaptive random search technique, Appl. math. comput., 173, 2, 1323-1333, (2006) · Zbl 1088.65058
[19] Liang, Y.; Kwong-Sak, L., Evolution strategies with exclusion-based selection operators and a Fourier series auxiliary function, Appl. math. comput., 174, 2, 1080-1109, (2006) · Zbl 1090.65075
[20] Wang, L.; Tang, F.; Wu, H., Hybrid genetic algorithm based on quantum computing for numerical optimization and parameter estimation, Appl. math. comput., 171, 2, 1141-1156, (2005) · Zbl 1090.65078
[21] X.C. Zhao, X.S. Gao, A micro-evolutionary programming for optimization of continuous space, in: A. Tiwari, R. Roy (Eds.), PPSN VIII Workshop on Challenges in Real World Optimization using Evolutionary Computing, 2004, pp. 17-23.
[22] Herrera, F.; Lozano, M., Gradual distributed real-coded genetic algorithms, IEEE trans. evol. comput., 4, 1, 43-63, (2000)
[23] Whitley, D.; Rana, S.; Dzubera, J.; Mathias, E., Evaluating evolutionary algorithms, Artif. intell., 85, 245-276, (1996)
[24] Schnier, T.; Yao, X., Using multiple representations in evolutionary algorithms, (), 479-486
[25] Wolpert, D.H.; Macready, W.G., No free lunch theorems for optimization, IEEE trans. evol. comput., 1, 1, 67-82, (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.