×

zbMATH — the first resource for mathematics

Multiple criteria facility location problems: a survey. (English) Zbl 1193.90143
Summary: This paper provides a review on recent efforts and development in multi-criteria location problems in three categories including bi-objective, multi-objective and multi-attribute problems and their solution methods. Also, it provides an overview on various criteria used. While there are a few chapters or sections in different location books related to this topic, we have not seen any comprehensive review papers or book chapter that can cover it. We believe this paper can be used as a complementary and updated version.

MSC:
90B80 Discrete location and assignment
90C29 Multi-objective and goal programming
PDF BibTeX Cite
Full Text: DOI
References:
[1] Drezner, Z.; Klamroth, K.; Schöbel, A.; Wesolowsky, G., The Weber problem, (), 1-36 · Zbl 1041.90023
[2] A. Weber, Über den Standort der Industrien, Tübingen. Theory of the Location of Industries, University of Chicago Press, 1909 (English translation by C.J. Friedrich (1929)).
[3] Handler, G.Y.; Mirchandani, P.B., Location on networks: theory and algorithms, (1979), MIT Press Cambridge, MA · Zbl 0533.90026
[4] Love, R.; Morris, J.; Wesolowsky, G., Facility location: models and methods, (1988), North-Holland Amsterdam
[5] Mirchandani, P.B.; Francis, R.L., Discrete location theory, (1990), Wiley Interscience New York · Zbl 0718.00021
[6] R.L. Francis, L.F. McGinnis, J.A. White, Facility Layout and Location: An Analytical Approach, Prentice Hall, Englewood Cliffs, 1992.
[7] Daskin, M.S., Network and discrete location: models, algorithms, and applications, (1995), Wiley Interscience New York · Zbl 0870.90076
[8] Drezner, T., Competitive facility location in the plane, () · Zbl 1145.91365
[9] Drezner, Z., Facility location: A survey of application and methods, (1995), Springer-Verlag Berlin
[10] Drezner, Z.; Hamacher, H., Facility location: applications and theory, (2002), Springer Berlin · Zbl 0988.00044
[11] Nickel, S.; Puerto, J., Location theory: A unified approach, (2005), Springer-Verlag Berlin · Zbl 1229.90001
[12] Church, R.L.; Murray, A.T., Business site selection, location analysis and GIS, (2009), Wiley New York
[13] ()
[14] Hwang, C.L.; Yoon, K., Multiple attribute decision making – methods and applications: a state-of-the-art survey, (1981), Springer New York · Zbl 0453.90002
[15] Hwang, C.; Lin, M., Group decision making under multiple objectives methods and application, (1987), Springer-Verlag Berlin
[16] Zionts, S., A survey of multiple criteria integer programming methods, Ann. discrete. math., 5, 389-398, (1979) · Zbl 0416.90067
[17] Hwang, C.L.; Masud, S.A.M., Multiple objective decision making – methods and applications: a state-of-the-art survey, (1979), Springer Berlin
[18] Szidarovszky, F.; Gershon, M.E.; Duchstein, L., Techniques for multi-objective decision making in systems management, (1986), Elsevier Science Publishers B.V. Amsterdam
[19] Ulungu, E.L.; Teghem, J., Multi-objective combinatorial optimization problems: a survey, J. multicrit. decisions anal., 3, 83-104, (1994) · Zbl 0853.90098
[20] C.M. Fonseca, P.J. Fleming, Multiobjective genetic algorithms, IEE Colloq. Genet. Algor. Control (1993) 6/1-6/5.
[21] Srinivas, N.; Deb, K., Multiobjective optimization using nondominated sorting in genetic algorithms, MIT press J., 2, 3, 221-248, (1994)
[22] Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T., A fast and elitist multiobjective genetic algorithm: NSGA II, IEEE trans. evolut. comput., 6, 2, 182-197, (2002)
[23] J.D. Schaffer, Multiple objective optimization with vector evaluated genetic algorithms, in: Proceedings of the First International Conference on Genetic Algorithms Table of Contents, 1985, pp. 93-100.
[24] Ehrgott, M.; Gandibleux, X., An annotated bibliography of multicriteria combinatorial optimization, OR spectrum, 22, 4, 425-460, (2000) · Zbl 1017.90096
[25] Cohon, J.L., Multiobjective programming and planning, (1978), Academic Press New York · Zbl 0462.90054
[26] Eiselt, H.A.; Laporte, G., Facility location: A survey of application and methods, (1995), Springer Newyork
[27] Current, J.; Daskin, M.; Schilling, D., Discrete network location models, (), 81-118 · Zbl 1061.90070
[28] Larichev, O.I.; Olson, D.L., Multiple criteria analysis in strategic siting problems, (2001), Kluwer Academic Publishers Boston
[29] Hekmatfar, M.; SteadieSeifi, M., Multi-criteria location problems, (), 373-393
[30] Ohsawa, Y., A geometrical solution for quadratic bicriteria location models, Eur. J. oper. res., 114, 380-388, (1999) · Zbl 0957.90080
[31] Nickel, S., Bicriteria and restricted 2-facility Weber problems, Math. meth. oper. res., 45, 167-195, (1997) · Zbl 0882.90086
[32] Bhattacharya, U.; Rao, J.R.; Tiwari, R.N., Bi-criteria multi facility location problem in fuzzy environment, Fuzzy sets syst., 56, 145-153, (1993) · Zbl 0787.90036
[33] Klamroth, K.; Wiecek, M.M., A bi-objective Median location problem with a line barrier, Oper. res., 50, 4, 670-679, (2002) · Zbl 1163.90620
[34] Skriver, A.J.V.; Andersen, K.A.; Holmberg, K., Bicriteria network location (BNL) problems with criteria dependent lengths and minisum objectives, Eur. J. oper. res., 156, 541-549, (2004) · Zbl 1056.90017
[35] Ohsawa, Y.; Ozaki, N.; Plastria, F.; Tamura, K., Quadratic ordered Median location problems, J. oper. res. soc. jpn., 50, 4, 540-562, (2007) · Zbl 1142.90017
[36] Kozanidis, G., Solving the linear multiple choice knapsack problem with two objectives: profit and equity, Comput. optim. appl., 43, 261-294, (2009) · Zbl 1170.90477
[37] S.I. Harewood, Emergency ambulance deployment in Barbados: a multi-objective approach, J. Oper. Res. Soc. 53 (2) (2002) 185-192 (part special issue: the process of OR). · Zbl 1138.90419
[38] Ohsawa, Y.; Plastria, F.; Tamura, K., Euclidean push-pull partial covering problems, Comput. oper. res., 33, 3566-3582, (2006) · Zbl 1094.90022
[39] Johnson, M.P., Single-period location models for subsidized housing: project-based subsidies, Socio-econ. plan. sci., 40, 249-274, (2006)
[40] Myung, Y.S.; Kim, H.G.; Tcha, D.W., A bi-objective uncapacitated facility location problem, Eur. J. oper. res., 100, 608-616, (1997) · Zbl 0918.90100
[41] Villegas, J.G.; Palacios, F.; Medaglia, A.L., Solution methods for the bi-objective (cost-coverage) unconstrained facility location problem with an illustrative example, Ann. oper. res., 147, 109-141, (2006) · Zbl 1183.90293
[42] Galvão, R.D.; Espejo, L.G.A.; Boffey, B.; Yates, D., Load balancing and capacity constraints in a hierarchical location model, Eur. J. oper. res., 172, 631-646, (2006) · Zbl 1168.90535
[43] Costa, M.G.; Captivo, M.E.; Clímaco, J., Capacitated single allocation hub location problem - A bi-criteria approach, Comput. oper. res., 35, 11, 3671-3695, (2008) · Zbl 1171.90454
[44] Klimberg, R.K.; Ratick, S.J., Modeling data envelopment analysis (DEA) efficient location/allocation decisions, Comput. oper. res., 35, 457-474, (2008) · Zbl 1141.90468
[45] Bhaskaran, S.; Turnquist, M.A., Multiobjective transportation considerations in multiple facility location, Transport. res. part A, 24, 2, 139-148, (1990)
[46] Blanquero, R.; Carrizosa, E., A DC biobjective location model, J. global optim., 23, 139-154, (2002) · Zbl 1175.90314
[47] Fernández, J.; Pelegrín, B.; Plastria, F.; Tóth, B., Planar location and design of a new facility with inner and outer competition: an interval lexicographical-like solution procedure, Networks spatial econ., 7, 19-44, (2007) · Zbl 1137.90580
[48] George, J.W.; ReVelle, C.S., Bi-objective Median subtree location problems, Ann. oper. res., 122, 219-232, (2003) · Zbl 1053.90079
[49] Du, F.; Evans, G.W., A bi-objective reverse logistics network analysis for post-Sale service, Comput. oper. res., 35, 2617-2634, (2008) · Zbl 1179.90033
[50] Fonseca, M.C.; García-Sánchez, A.; Ortega-Mier, M.; Saldanha-da-Gama, F., A stochastic bi-objective location model for strategic reverse logistics, Top, 1-27, (2009)
[51] Current, J.R.; ReVelle, C.S.; Cohon, J.L., The maximum covering/shortest path problem: a multiobjective network design and routing formulation, Eur. J. oper. res., 21, 189-199, (1985) · Zbl 0569.90062
[52] Brimberg, J.; Juel, H., A bicriteria model for locating a semi-desirable facility in the plane, Eur. J. oper. res., 106, 144-151, (1998)
[53] Melachrinoudis, E., Bicriteria location of a semi-obnoxious facility, Comput. indust. eng., 37, 581-593, (1999)
[54] Plastria, F.; Carrizosa, E., Undesirable facility location with minimal covering objectives, Eur. J. oper. res., 119, 158-180, (1999) · Zbl 0934.90051
[55] Zhang, F.G.; Melachrinoudis, E., The maximin – maxisum network location problem, Comput. optim. appl., 19, 209-234, (2001) · Zbl 0987.90052
[56] Hamacher, H.W.; Labbè, M.; Nickel, S.; Skriver, A.J.V., Multicriteria semi-obnoxious network location problem (MSNLP) with sum and center objectives, Ann. oper. res., 110, 33-53, (2002) · Zbl 1013.90022
[57] Skriver, A.J.V.; Andersen, K.A., The bicriterion semi-obnoxious location (BSL) problem solved by an &z.epsiv;-approximation, Eur. J. oper. res., 146, 517-528, (2003) · Zbl 1037.90043
[58] Melachrinoudis, E.; Xanthopulos, Z., Semi-obnoxious single facility location in Euclidean space, Comput. oper. res., 30, 2191-2209, (2003) · Zbl 1039.90030
[59] Rakas, J.; Teodorović, D.; Kim, T., Multi-objective modeling for determining location of undesirable facilities, Transport. res. part D, 9, 125-138, (2004)
[60] Yapicioglu, H.; Smith, A.E.; Dozier, G., Solving the semi-desirable facility location problem using bi-objective particle swarm, Eur. J. oper. res., 177, 733-749, (2007) · Zbl 1109.90051
[61] Karasakal, E.; Nadirler, D., An interactive solution approach for a bi-objective semi-desirable location problem, J. global optim., 42, 177-199, (2008) · Zbl 1160.90557
[62] Medaglia, A.L.; Villegas, J.G.; Rodríguez-Coca, D.M., Hybrid bi-objective evolutionary algorithms for the design of a hospital waste management network, J. heuristics, 15, 153-176, (2009) · Zbl 1176.90662
[63] Carrano, E.G.; Takahashi, R.H.C.; Fonseca, C.M.; Neto, O.M., (), 486-500, ISBN: 978-3-540-70927-5
[64] Current, J.; Min, H.; Schilling, D., Multiobjective analysis of facility location decisions, Eur. J. oper. res., 49, 295-307, (1990) · Zbl 0717.90042
[65] Buhl, H.U., Axiomatic considerations in multi-objective location theory, Eur. J. oper. res., 37, 363-367, (1988) · Zbl 0652.90034
[66] Nijkamp, P.; Spronk, J., Interactive multidimensional programming models for locational decisions, Eur. J. oper. res., 6, 220-223, (1981) · Zbl 0451.90046
[67] Puerto, J.; Fernández, F.R., A convergent approximation scheme for efficient sets of the multi-criteria Weber location problem, Sociedad de estadistica e investigacidn operativa top, 6, 2, 195-204, (1998) · Zbl 0916.90192
[68] Bhattacharya, U.; Rao, J.R.; Tiwari, R.N., Fuzzy multi-criteria facility location problem, Fuzzy sets syst., 51, 277-287, (1992) · Zbl 0787.90039
[69] Nickel, S.; Puerto, J.; Rodríguez-Chía, A.M.; Weissler, A., Multicriteria planar ordered Median problems, J. optim. theory appl., 126, 3, 657-683, (2005) · Zbl 1203.90098
[70] Ogryczak, W., On the lexicographic minimax approach to location problems, Eur. J. oper. res., 100, 566-585, (1997) · Zbl 0921.90106
[71] Ogryczak, W., On the distribution approach to location problems, Comput. indust. eng., 37, 595-612, (1999)
[72] Badri, M.A.; Mortagy, A.K.; Alsayed, C.A., A multi-objective model for locating fire stations, Eur. J. oper. res., 110, 243-260, (1998) · Zbl 0948.90094
[73] Araz, C.; Selim, H.; Ozkarahan, I., A fuzzy multi-objective covering-based vehicle location model for emergency services, Comput. oper. res., 34, 705-726, (2007) · Zbl 1120.90352
[74] Doerner, K.F.; Gutjahr, W.J.; Nolz, P.C., Multi-criteria location planning for public facilities in tsunami-prone coastal areas, OR spectrum, 31, 3, 651-678, (2009) · Zbl 1163.90598
[75] Farhan, B.; Murray, A.T., Siting park-and-ride facilities using a multi-objective spatial optimization model, Comput. oper. res., 35, 445-456, (2008) · Zbl 1141.90466
[76] Chan, Y.; Mahan, J.M.; Chrissis, J.W.; Drake, D.A.; Wang, D., Hierarchical maximal-coverage location – allocation: case of generalized search-and-rescue, Comput. oper. res., 35, 1886-1904, (2008) · Zbl 1139.90027
[77] Puerto, J.; Rodríguez-Chía, A.M., Quasiconvex constrained multicriteria continuous location problems: structure of nondominated solution sets, Comput. oper. res., 35, 750-765, (2008) · Zbl 1278.90220
[78] Yang, L.; Jones, B.F.; Yang, S.H., A fuzzy multi-objective programming for optimization of fire station locations through genetic algorithms, Eur. J. oper. res., 181, 903-915, (2007) · Zbl 1131.90409
[79] Melachrinoudis, E.; Min, H.; Wu, X., A multiobjective model for the dynamic location of landfills, Location sci., 3, 3, 143-166, (1995) · Zbl 0916.90181
[80] Fernández, E.; Puerto, J., Multiobjective solution of the uncapacitated plant location problem, Eur. J. oper. res., 145, 509-529, (2003) · Zbl 1011.90034
[81] Cho, C.J., An equity-efficiency trade-off model for the optimum location of medical care facilities, Socio-econ. plan. sci., 32, 2, 99-112, (1998)
[82] Klimberg, R.K.; Bennekom, F.C.V., Aggregate planning models for field service delivery, Location sci., 5, 3, 181-195, (1997) · Zbl 0915.90183
[83] Erkut, E.; Karagiannidis, A.; Perkoulidis, G.; Tjandra, S.A., A multicriteria facility location model for municipal solid waste management in north Greece, Eur. J. oper. res., 187, 1402-1421, (2008) · Zbl 1137.90605
[84] Kerbache, L.; Smith, M.G., Multi-objective routing within large scale facilities using open finite queueing networks, Eur. J. oper. res., 121, 105-123, (2000) · Zbl 0971.90014
[85] Leung, S.C.H.; Wu, Y.; Lai, K.K., Cross-border logistics with fleet management: a goal programming approach, Comput. indust. eng., 50, 263-272, (2006)
[86] Lin, C.K.Y.; Kwok, R.C.W., Multi-objective metaheuristics for a location-routing problem with multiple use of vehicles on real data and simulated data, Eur. J. oper. res., 175, 3, 1833-1849, (2006) · Zbl 1142.90325
[87] Caballero, R.; González, M.; Guerrero, F.M.; Molina, J.; Paralera, C., Solving a multiobjective location routing problem with a metaheuristic based on tabu search: application to a real case in andalusia, Eur. J. oper. res., 177, 1751-1763, (2007) · Zbl 1102.90033
[88] Doerner, K.; Focke, A.; Gutjahr, W.J., Multicriteria tour planning for mobile healthcare facilities in a developing country, Eur. J. oper. res., 179, 1078-1096, (2007) · Zbl 1163.90599
[89] Alumur, S.; Kara, B.Y., A new model for the hazardous waste location-routing problem, Comput. oper. res., 34, 1406-1423, (2007) · Zbl 1102.90363
[90] Zhang, X.; Armstrong, M.P., Genetic algorithms and the corridor location problem: multiple objectives and alternative solutions, Environ. plan. B, 35, 148-168, (2008)
[91] Melachrinoudis, E.; Min, H., The dynamic relocation and phase-out of a hybrid, two-echelon plant/warehousing facility: a multiple objective approach, Eur. J. oper. res., 123, 1-15, (2000) · Zbl 0961.90044
[92] Dias, J.; Captivo, M.E.; Clímaco, J., A memetic algorithm for multi-objective dynamic location problems, J. global optim., 42, 221-253, (2008) · Zbl 1173.90004
[93] Stummer, C.; Doerner, K.; Focke, A.; Heidenberger, K., Determining location and size of medical departments in a hospital network: a multiobjective decision support approach, Health care manage. sci., 7, 63-71, (2004)
[94] Raisanen, L.; Whitaker, R.M., Comparison and evaluation of multiple objective genetic algorithms for the antenna placement problem, Mobile networks appl., 10, 79-88, (2005)
[95] Hong, Y.Y.; Hsieh, H.M.; Ho, S.Y., Determination of locations for static transfer switches using genetic algorithms and fuzzy multi-objective programming, Elec. power energy syst., 29, 480-487, (2007)
[96] Cantarella, G.E.; Vitetta, A., The multi-criteria road network design problem in an urban area, Transportation, 33, 567-588, (2006)
[97] Leung, S.C.H., A non-linear goal programming model and solution method for the multi-objective trip distribution problem in transportation engineering, Optim. eng., 8, 277-298, (2007) · Zbl 1179.90036
[98] Uno, T.; Katagiri, H., Single- and multi-objective defensive location problems on a network, Eur. J. oper. res., 188, 76-84, (2008) · Zbl 1135.90022
[99] Pati, R.K.; Vrat, P.; Kumar, P., A goal programming model for paper recycling system, Omega, 36, 405-417, (2008)
[100] Colebrook, M.; Sicilia, J., A polynomial algorithm for the multicriteria cent-Dian location problem, Eur. J. oper. res., 179, 1008-1024, (2007) · Zbl 1163.90596
[101] H. Selim, I. Ozkarahan, Application of Fuzzy Multi-objective Programming Approach to Supply Chain Distribution Network Design Problem. MICAI 2006: Advances in Artificial Intelligence. Springer, Berlin/Heidelberg, 2006, pp. 415-425, ISBN: 978-3-540-49026-5.
[102] Xu, J.; Liu, Q.; Wang, R., A class of multi-objective supply chain networks optimal model under random fuzzy environment and its application to the industry of Chinese liquor, Inform. sci., 178, 2022-2043, (2008) · Zbl 1161.90016
[103] Giannikos, I., A multiobjective programming model for locating treatment sites and routing hazardous wastes, Eur. J. oper. res., 104, 333-342, (1998) · Zbl 0955.90120
[104] Maniezzo, V.; Mendes, I.; Paruccini, M., Decision support for siting problems, Decision support syst., 23, 3, 273-284, (1998)
[105] Nema, A.K.; Gupta, S.K., Optimization of regional hazardous waste management systems: an improved formulation, Waste manage., 19, 441-451, (1999)
[106] Drezner, T.; Drezner, Z.; Salhi, S., A multi-objective heuristic approach for the casualty collection points location problem, J. oper. res. soc., 57, 727-734, (2006) · Zbl 1151.90585
[107] Higgs, G., Integrating multi-criteria techniques with geographical information systems in waste facility location to enhance public participation, Waste manage. res., 24, 105-117, (2006)
[108] Tuzkaya, G.; Önüt, S.; Tuzkaya, U.R.; Gülsün, B., An analytic network process approach for locating undesirable facilities: an example from Istanbul, Turkey, J. environ. manage., 88, 4, 970-983, (2008)
[109] Aras, H.; Erdoğmuş, Ş.; Koç, E., Multi-criteria selection for a wind observation station location using analytic hierarchy process, Renew. energy, 29, 1383-1392, (2004)
[110] Tzeng, G.H.; Teng, M.H.; Chen, J.J.; Opricovic, S., Multicriteria selection for a restaurant location in Taipei, Hosp. manage., 21, 171-187, (2002)
[111] Kinra, A.; Kotzab, H., A macro-institutional perspective on supply chain environmental complexity, Int. J. product. econ., 115, 283-295, (2008)
[112] Fernández, I.; Ruiz, M.C., Descriptive model and evaluation system to locate sustainable industrial areas, J. Clean. product., 17, 87-100, (2009)
[113] Badri, M.A., Combining the analytic hierarchy process and goal programming for global facility location – allocation problem, Int. J. product. econ., 62, 237-248, (1999)
[114] Guo, L.S.; He, Y.S., Integrated multi-criterial decision model: a case study for the allocation of facilities in Chinese agriculture, J. agric. eng. res., 73, 87-94, (1999)
[115] Chan, F.T.S.; Chung, S.H., Multi-criteria genetic optimization for distribution network problems, Int. J. adv. manuf. technol., 24, 517-532, (2004)
[116] Chou, T.Y.; Hsu, C.L.; Chen, M.C., A fuzzy multi-criteria decision model for international tourist hotels location selection, Int. J. hosp. manage., 27, 293-301, (2008)
[117] Shen, C.Y.; Yu, K.T., A generalized fuzzy approach for strategic problems: the empirical study on facility location selection of authors’ management consultation client as an example, Expert syst. appl., 36, 4709-4716, (2009)
[118] Kahraman, C.; Ruan, D.; Doğan, I., Fuzzy group decision-making for facility location selection, Inform. sci., 157, 135-153, (2003) · Zbl 1049.90038
[119] Tabari, M.; Kaboli, A.; Aryanezhad, M.B.; Shahanaghi, K.; Siadat, A., A new method for location selection: a hybrid analysis, Appl. math. comput., 206, 598-606, (2008) · Zbl 1177.90225
[120] Barda, O.H.; Dupuis, J.; Lencioni, P., Multicriteria location of thermal power plants, Eur. J. oper. res., 45, 332-346, (1990)
[121] Norese, M.F., ELECTRE III as a support for participatory decision-making on the localisation of waste-treatment plants, Land use policy, 23, 76-85, (2006)
[122] Canbolat, Y.B.; Chelst, K.; Garg, N., Combining decision tree and MAUT for selecting a country for a global manufacturing facility, Omega, 35, 312-325, (2007)
[123] Farahani, R.Z.; Asgari, N., Combination of MCDM and covering techniques in a hierarchical model for facility location: a case study, Eur. J. oper. res., 176, 1839-1858, (2007) · Zbl 1109.90323
[124] Yong, D., Plant location selection based on fuzzy TOPSIS, Int. J. adv. manuf. technol., 28, 839-844, (2006)
[125] Wadhwa, S.; Madaan, J.; Chan, F.T.S., Flexible decision modeling of reverse logistics system: a value adding MCDM approach for alternative selection, Robit. comput. integ. manuf., 25, 2, 460-469, (2009)
[126] Ertuğrul, I.; Karakaşoğlu, N., Comparison of fuzzy AHP and fuzzy TOPSIS methods for facility location selection, Int. J. adv. manuf. technol., 39, 783-795, (2008)
[127] Lahdelma, R.; Salminen, P.; Hokkanen, J., Locating a waste treatment facility by using stochastic multicriteria acceptability analysis with ordinal criteria, Eur. J. oper. res., 142, 345-356, (2002) · Zbl 1082.90536
[128] Cáceres, R.G.G.; Durand, J.A.A.; Gómez, F.P., Integral analysis method - IAM, Eur. J. oper. res., 192, 3, 891-903, (2009) · Zbl 1157.90522
[129] Turetken, O., Is your back-up IT infrastructure in a safe location – a multi-criteria approach to location analysis for business continuity facilities, Inform. syst. front., 10, 375-383, (2008)
[130] Guimarães Pereira, A.; Munda, G.; Paruccini, M., Generating alternatives for siting retail and service facilities using genetic algorithms and multi-criteria decision techniques, J. retail. consum. services, 1, 2, 40-47, (1994)
[131] Ogryczak, W.; Studziński, K.; Zorychta, K., A solver for the multi-objective transshipment problem with facility location, Eur. J. oper. res., 43, 53-64, (1989) · Zbl 0681.90035
[132] Ogryczak, W.; Studziński, K.; Zorychta, K., DINAS: a computer-assisted analysis system for multiobjective transshipment problems with facility location, Comput. oper. res., 19, 7, 637-647, (1992)
[133] Malczewski, J.; Ogryczak, W., The multiple criteria location problem: 2. preference-based techniques and interactive decision support, Environ. plan. A, 28, 69-98, (1996)
[134] Karkazis, J., Facilities location in a competitive environment: a promethee based multiple criteria analysis, Eur. J. oper. res., 42, 294-304, (1989) · Zbl 0688.90018
[135] Chopra, S.; Sodhi, M.S., Managing risk to avoid supply-chain breakdown, MIT sloan manage. rev., 46, 1, 53-61, (2004)
[136] L.V. Snyder, P.M. Scaparra, M.S. Daskin, R.L. Church, Planning for Disruptions in Supply Chain Networks, Tutorials in Operations Research: Models, Methods and Applications for Innovative Decision Making, INFORMS, 2006.
[137] Mulvey, J.M.; Vanderbei, R.J.; Zenios, S.A., Robust optimization of large-scale systems, Oper. res., 43, 264-281, (1995) · Zbl 0832.90084
[138] Dehghanian, F.; Mansour, S., Designing sustainable recovery network of end-of-life products using genetic algorithm, resources, Conserv. recycl., 53, 559-570, (2009)
[139] M. Pishvaee, R.Z. Farahani, W. Dullaert, A memetic algorithm for multi-objective integrated forward/reverse logistics network design, Comput. Oper. Res., in press, doi:10.1016/j.cor.2009.09.018. · Zbl 1178.90060
[140] Melo, M.T.; Nickel, S.; Saldanha-da-Gama, F., Facility location and supply chain management – a review, Eur. J. oper. res., 196, 2, 401-412, (2009) · Zbl 1163.90341
[141] Colson, B.; Marcotte, P.; Savard, G., An overview of bilevel optimization, Ann. oper. res., 153, 235-256, (2007) · Zbl 1159.90483
[142] Klose, A.; Drexl, A., Facility location models for distribution system design, Eur. J. oper. res., 162, 4-29, (2005) · Zbl 1132.90345
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.