×

zbMATH — the first resource for mathematics

A note about WYL’s conjugate gradient method and its applications. (English) Zbl 1193.90213
Summary: This paper reviews the development of different versions of nonlinear conjugate gradient methods shortly, the special attentions were given to the WYL method which was proposed by Z. X. Wei, S. W. Yao and L. Y. Liu [Appl. Math. Comput. 183, No. 2, 1314–1350 (2006; Zbl 1116.65073)], and its applications.

MSC:
90C52 Methods of reduced gradient type
65F10 Iterative numerical methods for linear systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Al-Baali, A., Descent property and global convergence of the fletcher – reeves method with inexact line search, IMA J. numer. anal, 5, 121-124, (1985) · Zbl 0578.65063
[2] Chen, X.; Sun, J., Global convergence of a two-parameter family of conjugate gradient methods without line search, J. comput. appl. math., 146, 37-45, (2002) · Zbl 1018.65081
[3] Dai, Y., Convergence of nonlinear conjugate methods, J. comput. math., 9, 539-549, (2001)
[4] Y. Dai, Convergence of Polak-Ribière-Polyak conjugate gradient method with constant stepsizes, Institute of Computational Mathematics and Scientific/Engineering Computing, Chinese Academy of Sciences, 2001.
[5] Dai, Y.; Han, J.; Liu, G.; Sun, D.; Yin, H.; Yan, Y., Convergence properties of nonlinear conjugate methods, SIAM J. optim., 2, 345-358, (1999) · Zbl 0957.65062
[6] Y. Dai, Y. Yuan, Further studies on the Polak-Ribière-Polyak method, Research Report ICM-95-040, Institute of Computational Mathematics and Scientific/Engineering Computing, Chinese Academy of Sciences, 1995.
[7] Dai, Y.; Yuan, Y., A nonlinear conjugate gradient with a strong global convergence properties, SIAM J. optim., 10, 177-182, (2000)
[8] Dai, Y.; Yuan, Y., Nonlinear conjugate gradient methods, (2000), Science Press of Shanghai Shanghai · Zbl 1030.90141
[9] Dai, Y.; Yuan, Y., An efficient hybrid conjugate gradient method for unconstrained optimization, Annal. oper. res., 103, 33-47, (2001) · Zbl 1007.90065
[10] Fletcher, R., Practical method of optimization, Vol. I: unconstrained optimization, (1997), Wiley New York
[11] Fletcher, R.; Reeves, C., Function minimization by conjugate gradients, Comput. J., 7, 149-154, (1964) · Zbl 0132.11701
[12] Gibert, J.C.; Nocedal, J., Global convergence properties of conjugate gradient methods for optimization, SIAM J. optim., 2, 21-42, (1992) · Zbl 0767.90082
[13] Grippo, L.; Lucidi, S., A globally convergent version of the polak – ribière gradient method, Math. program., 78, 375-391, (1997) · Zbl 0887.90157
[14] Hestenes, M.R.; Stiefel, E., Method of conjugate gradient for solving linear equations, J. res. nat. bur. stand., 49, 409-436, (1952) · Zbl 0048.09901
[15] Liu, Y.; Storey, C., Efficient generalized conjugate gradient algorithms, part 1: theory, J. optim. theory appl., 69, 129-137, (1992) · Zbl 0702.90077
[16] Polak, E.; Ribière, G., Note sur la convergence de directions conjugèes, Rev. francaise informat recherche operationelle, 3e annèe, 16, 35-43, (1969) · Zbl 0174.48001
[17] Polyak, B.T., The conjugate gradient method in extreme problems, USSR comp. math. math. phys., 9, 94-112, (1969) · Zbl 0229.49023
[18] Powell, M.J.D., Nonconvex minimization calculations and the conjugate gradient method, (), 122-141 · Zbl 0531.65035
[19] Sun, J.; Zhang, J., Convergence of conjugate gradient methods without line search, Annal. oper. res., 103, 161-173, (2001) · Zbl 1014.90071
[20] Zoutendijk, G., Nonlinear programming computational methods, (), 37-86 · Zbl 0336.90057
[21] Wei, Zengxin, The convergence properties of some conjugate gradient methods, Appl. math. comput., 183, 1341-1350, (2006) · Zbl 1116.65073
[22] Hai Huang et al., The proof of the sufficient descent condition of the Wei-Yao-Liu conjugate gradient method under the strong Wolfe-Powell line search, Appl. Math. Comput. doi:doi:10.1016/j.amc.2006.12.006, 2007. · Zbl 1131.65049
[23] Huang Hai, Lin Suihua, Yao Shengwei, A new conjugate gradient method of modified LS formula, Department of Mathematics and Information Science, Guangxi University, 2006.
[24] Huang Hai, Yao Shengwei, Lin Suihua, A new conjugate gradient method combined HS and DY formulas, Department of Mathematics and Information Science, Guangxi University, 2006.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.